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ABSTRACT 

This report is primarily concerned with the stud) of 

electromagnetic scattering by random scatterers.    Potential 

applications to radar detection and communication problems 

are stressed.   In radar detection problems, it is often necessary 

to detect a target echo in the presence of other unwanted echoes 

(clutter).   In order that a radar receiver can be designed to operate 

effectively in the presence of clutter interference, it is necessary 

to develop a suitable theoretical model of the clutter which can be 

used for the design and evaluation of detection schemes.   In radio 

communication problems, it is desirable that signals can be 

communicated between two non-line-of-sight points by means of 

electromagnetic scattering from a medium which occupies the 

region of space illumi" ited by the two antenna beams.    Detailed 

knowledge of the scattering characteristics of the medium will 

enable one to select proper signal parameters for transmittal of 

information and optimum processing schemes. 

A cloud of dipoles (chaff),  dispensed in a proper region 

in space to act as radar reflectors,  can be described as an 

assembly of random scatterers.    When chaff dipoles are dispensed 

from a moving craft in space, they will in general move relative 

y 
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to one another.    In addition,  each dipole will have a tumbling 

motion due to effects of injection forces, body instability,  and 

other aerodynamical properties.    Since the location and motion 

of the individual scatterers are unknown,  the scattering problems 

are best treated statistically. 

The bistatic radar reflecting characteristics of a 

j 
randomly tumbling dipole are investigated.   An expression for 

ehe scattered voltage is derived by application of the Lorentz 

reciprocity theorem.    The correlation properties of the received 

signal are examined.   Some statistical assumptions are made in 

order to obtain readily usable results. 

A theoretical model is developed for the radar echo from 

a random collection of moving dipole scatterers.    The analysis 
i 

of the model takes into account some effects of scatterer rotation 
I 1 

which have been neglected in previous work.    The fluctuating 
j 

characteristics of clutter echoes are also determined.    The 

theory and some experimental results in the literature are shown 

to be in relatively good agreement. 

The properties of random scatter communication channels 

i 
are also investigated.    The constitutive parameters of the 

scattering medium are assumed to be varying randomly with 

space and time.    The effects of antenna gain are included in the 

derivation of the channel function in order to take explicit account 

111 
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of the fact that scatter er s may flow in and out of the volume 

illuminated by the two antenna beams.   Arbitrary polarization is 

assumed for both the transmitting and receiving antennas.    Specific 

results are obtained for dipole and plasma scattering. 

iv 
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Chapter 1 

INTRODUCTION 

1.1   The Problem and Objectives of this Study 

In radar systems it is often necessary to detect a target echo 

in the presence of other unwanted echoes or clutter.   Clutter echoes 

include signals reflected from chaff, surface of the ground and sea« 

vegetation, etc.    The ability of a radar to detect a target echo is 

limited by the presence of clutter.   In order to develop a radar 

receiver that will operate effectively in the presence of clutter inter« 

ference» it is desirable to have a theoretical model of the clutter 

which can be used for the design and evaluation of detection schemes. 

If the clatter waveform were precisely known, it would be possible» 

in principle, to synthesize a filter which optimizes the signal-to- 

noise ratio at the output of the receiver. 

The clutter model most often assumed for theoretical analyses 

is the "point scatterer" model.    Rotational motion of the scatter«! • 

is neglected.    The scatterers are treated as point targe tc wit» 

variable cross section. 
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Chaff is a form ef countermeasure used against radar.   A 

chaff cloud usually consists of a large number of dipoles resembling 

an assembly of random scatterers. 'When chaff dipoles are dispensed 

from a moving craft in space, the dipoles experience certain forces 

which may cause them to rotate or tumble.   In some applications the 

dipoles may be constrained tc rotate   bout a preferred axis.   Thus» 

ignoring the effects of scatterer rotation will result in an incorrect ' 

representation c   the model.   Ground clutter exhibits echoing charac* 

teristics similar to those of an assembly of random scatterers. 

Rotational motion of the scatterers, or equivalent movement® of 

branches, leaves, grass, etc., under the effects of wind force, can. 

become a major contributing factor to the observed fluctuations of - 

echo intensity. 

Herein, a new theoretical model for the radar echo from such 

collections of random scatterers is developed.   The scatterers are 

treated as randomly oriented dipoles instead of points with variable 

cross section».   This assumption permits the determination of 

scatterer rotation. 

In many radio communication problems signals must be 

communicated between two non- line -of- sight points by means of 

electromagnetic scattering from a medium which occupies the region 
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of space illuminated by the two antenna beams.   The scattering: 

medium may be continuous such as the inhomogenecus atmosphere or 

may consist of a random collection of metallic scatterera such at 

chaff. 

The scattering medium in general varies with both position 

and time.   In the analyse* of random scattering most investigator« 

have ignored the time dependence and have been concerned only with 

the calculation of the average cross section of the scattering medium. 

The average cross section is useful for estimating the signal-to-nois« 

ratio at the receiver; however, it does not provide adequate informa- 

tion regarding the fluctuating characteristics of the scattered wave- 

form.   In the present work, we study scatter channels in which the 

scattering medium is randomly varying.    General time dependence ia 

assumed.    The statistical nature of «such channels are carefully 

examined. 

1. 2  Summary of Previous Work 

Clutter echoes are often reg«* aed as signals reflected from 

an assembly of independent random scatterers.    A.cloud of dipole* 

(chaff), dispensed randomly in space, it? an example of such a set. 

Because of the random location and motion of the individual scatter- 

ers,  clutter echoes are best tr atsd statistically.    Siegert f26]. 

?: 
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Kerr [13]» and Lawson and Uhlenbeck [27], developed the first 

probability distribution functions for the magnitude of the returned 

echo from an infinitely dense chaff cloud. Kelly and Lerner [24] 

developed a more extensive theoretical chaff model. They showed 

that the returned echo from the chaff cloud could be regarded as & 

random process and treated the scatterers as points with variable 

cross sections. 

Kerr [13] and Lawson and Uhlenbeck [27] presented some 

experimental results on the measurements of chaff models and ground 

clutter.   Some anomalous characteristics were observed in the 

measured correlation functions.    Kerr suggested that the cause could 

have been due to the effects of scatterer rotation, but he made no 

theoretical analysis to clarify this phenomenon. 

The possibility of using a cloud of chaff dipoles for estab- 

lishing short time communications between non-line-of-aight points 

was considered by Blom [8] and Hessemer [9].    The recent West \ 

Ford Project [11] extended this basic concept and deployed an 

orbiting dipole belt.    This belt established the first world-wide 

scatter communication channel. 

Some of the statistical properties of random scatter channels 

were presented recently by Kelly [14].    Kelly's analyses include both 

*    I 
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the continuous and discrete scatterer channel«.    He took into account 

quite generally the varying character of the constitutive parameters 

of the medium with position and tint«. 

1. 3   Summary of Results 

Chapter 2 presents an analysis of the reflecting characteris- 

tics of a rotating dipole.    The dipoie is assumed to be rotating about 

an arbitrary axis perpendicular to its length.    Arbitrary polarisation 

is assumed for both the transmitting and receiving antennas.    The 

Lorentz reciprocity theorem is applied to derive an expression far 

the b'.static scattered voltage.   It is shown that the received signal is' 

in general modulated in both amplitude and phase.    The correlation 

properties of the received signal are examined.   Some statistical 

assumptions are made in order to obtain tractable results. 

A theoretical model for the radar echo from a random collec- 

tion of dipole scatterers is formulated in Chapter 3.    The analysis 

of «he model takes into account the effects of scatterer rotation.   An 

expression for the correlation function of the returned echo is derived 

in terms of the characteristics of the transmitted waveform, polari- 

zation, and the statistical properties of the scatterers.   Under the 

assumption that the cloud density is slowly varying, the process 

becomes stationary.    The probability density of the returned 

____ ■v* * ' -^■^^^M^'^M mmmm 
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waveform U shown to approach a Gaussian probability density aa UM 

rate of echo return becomes large.   The theory can be applied to thai 

study of a wide class of clutter signals which exhibit similar echoing 

characteristics.   For example, targets making up ground clutter such 

as trees, grass, etc., will move and/or oscillate with the wind.   The 

individual blades or stems scatter like dipoles.    The fluctuating 

characteristics of clutter echoes are also determined.   Comparison 

between the theory and some experimental results in the literature 

are shown to be in relatively good agreement. 

Chapter 4 describes a communication channel which is 

provided by means of electromagnetic scattering from a collection of 

scatter«,   s randomly distributed in a region of »pacn.    The collection 

of scatterers behaves like a dispersive medium,  and the number 

density varies with both position and time.    The channel response 

function is described in terms of the scattering properties of the 

medium«,    The mean and the covariance of the channel output are 

derived under the assumption of Poisson statistics.    The gain func- 

tions of the transmitting and receiving antennas arc: included in the 

analyses in order to take explicit account of the fact that scatter«:?* 

may flow in and out of the volume illuminated by the two antenna 

beams.    The effects of scatierer rotation are also considered.    The 

case of dipole scattering is given at an example. 



The properties of a dispersive continuous channel are 

considered in Chapter 5.    The scattered fields are derived in ttrma 

of the electric and magnetic susceptibility functions of medium.   As- 

in the discrete scatterer case, the effect of antenna gain is also taken 

into account in deriving the channel function.   Since there are many 

similarities in the formalism between the two types of scattering, 

most of the results obtained for the discrete scatterer case are valid 

for the continuous ease. 

OTwaawMifflni——- 



piMJUl    III I ■! II,,    I ."'-'   

■i 

Chapter 2 

BISTATIC RADAR REFLECTIONS FROM A 
RANDOMLY ROTATING DIPOLE 

2. 1   Introduction 

When a plane electromagnetic wave impinges upon a target 

in apace, some of the incident energy will be scattered in the direc- 

tion of the radar receiver.   The characteristics of the scattered • 

signal depend upon (1) the size, shape, and orientation of the target 

and (2) the frequency and state of polarization of the incident wave. 

The problem of electromagnetic scattering from cylindrical 

wires has been considered by a number of investigators [1] - [?]. 

A bundle of metallic wires or strips (known as chaff), cut to resonate 

at a certain wavelength, may be dispensed in a proper region in 

space to act as effective radar reflectors.   These reflectors can 

perform two different functions: 

(1) To present certain characteristic echoes to a radar for 

purposes of identification, deception, or confusion [3]. 

(2) To provide a channel for beyond line-of-sight communi- 

cations [8] - [II], 
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A cloud of dipoles can be represented by an assembly of 

random scatterers.    When chaff dipoles are dropped into space» they 

will in general move relative to one another.   Each dipole will have 

a slightly varying position and velocity, thus giving rise to a Doppler 

spread in the scattered signal.    In addition, the dipoles will have a 

tumbling motion due to effects of body instability and other aero- 

dynamical properties.    Tumbling motion of the dipoles can cause 

further frequency spreading in the received waveform.   In many 

practical situations, tumbling speeds were not thought to be very ' 

rapid [11] -[12] and considered to give only second order effects; 

while in other situations, the effects of scatterer tumbling (or • 

rotation) could be observed and found to have significant contributions 

upon the received waveform [1?].   It will be shown in Chapter $ 

that, in general, the effects due to scatterer relation cannot be 

neglected if the Doppier spread arising from the velocity fluctuations 

of the scatterers is small. 

In order that a radar receiver can be designed to operate £• 

an optimum fashion, an adequate knowledge of the amplitude and 

phase characteristics of the scattered waveform will be required. 

In the analyses of random scattering, most investigators ignore the 

effects of scatterer rotation and assrsme a "point scatterer'* model» 

using the information on the average cross section of the individual 
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scatter«?*.   The "point scatterer" modal it valid for rotationaily 

symmetric scatterers.   However» such a representation is not 

»d-qui-.te for scattere*»» of other shapes such as dipolea. 

This chapte: presents an analysis of the reflecting charac- 

teristics of a tumbling dipole.   It is assumed that the tumbling.motion 

of the dipole can be described by a rotation about an axis perpendicu- 

lar to its length.   An expression for the bistatic scattered voltage is - 

derived as a function of the transmitter and receiver polarisations 

and the orientation of the rotation axis of the dipole.   The statistical 

properties of the signal reflected from a collection of randomly 

rotating chaff dipolet are discussed by means of a mathematical 

model.    The correlation function of the received signal envelop« ia 

derived in terms of the characteristics of the transmitted waveform, 

polarization, and the statistical properties of the scatterers. 

2. 2  Characteristics of the Scattered Signal 

An expression for the scattered signal can be derived by 

application of the Lorentz reciprocity theorem (Appendix I).    The 

radar system consists of a transmitter which illuminates the target 

and a receiver at which we evaluate the scattered signal.   The total 

voltage received is the sum of the voltages induced by the transmitter 

field and the field scattered by the target,   in the following derivation. 
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we shall ignore the coupling effects between the transmitter «ad 

receiver, but allow for variable polarisations^   The received voltage 

is then given by 

X » it I E. • J dV R (2.1) 

where I_ is the feed-point eurrent which would have to be supplied to 

the receiving antenna» if it were used as a transmitting antenna» to 

create the field E    in the absence of the target, and J is the current 

density associated with the dipole.   If the dipole is thin and if the 

field can be considered uniform throughout the small volume V 

containing the dipole, the integral on the right side of (2.1) can be 

expressed in terms of the induced moment on the dipole.   Thus, 

J    E„ • J dV * iis p • E. (2.2) 

The induced dipole moment can be written as 

P =  % Vd • ET* * (2.5) 

where E_ is the transmitted electric field, a   is the polarisabiUty 
T £ 

1 * of the dipole , and d is a unit vector parallel to the dipole axis.    The 

Here the polarisability is treated as a seals , more generally. It 
is a tensor [14]. 
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field quantities E_ and E_ can be written as E  •« £«„•,. and 
T R T       OT  T 

ER « EjR
e

R» wh«re e_ and e    are the polarisation vectors of the 

transmitter and receiver, respectively, and the symbol — is «sad ft» 

indicate a complex quantity.   Equation (2.1) become« 

its « a   ~    «# 
1S   ^EQTEOR<*   ;^;R> (2.4) 

If the same antenna is used for transmitting and receiving 
• m * *"» •» *• 

(monostatic case), we have eT* e   = e and E   _* EQ   « E^ (2.4) 

reduces to 

its C a 
7 .      o o • 2 2.5    \2 a *  -yy— Eo (d*e) (2.5) 

The bistatic scattering geometry in shown in Fig. 1.   The 

transmitter and receiver Are separated by the angle 0.   The incident 

wave is assumed to be propagating along the positive z~axis of the 

transmitter (unprimed) coordinate »ystem, and the scattered wave* Is 

observed in the direction of the negative s'-axis of the receiver 

(primed) coordinate system.    In order to compute the bistatic 

scattered voltage, it is necessary to express the dipole orientation 

and the polarization vectors in one common coordinate system.   For 

simplicity, we choose the bistatic angle ß such that it represents a 
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Fig.  £ - BisUtic Scattering Geometry 
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rotation in the xs-plane.   Hence, the unit vectors IV, «', a' I in the r     * x     y     a 

receiver coordinate system are related to the unit vector» 
A a, » 

(a , a , a ) in the transmitter coordinate system by the rotational 

transformation. 

(2.6) 

Figure 2 shows the coordinate system for the rotating dipole« 

For the present purpose» the distance between the dipole and the 

radar is assumed to be fixed.   The dipole is rotating about an arbi- 

trary axis s defined by the angles * and r\.   Let (u, v, s) be a set of 

orthogonal axes, then u and v lie in the plane of rotation of the dipole. 

If w   is the angular rotation frequency of the dipole and if <X is its 

initial position with respect to the u-axis, then the instantaneous 

position of the unit vector d may be- represented by 

d =   a  cos ♦ +  a   sin ♦ u v (2.7) 

where <jf =   iw t + a and a   and a   are unit vectors along the u and v r uv " 

axes,  respectively.    For convenience, the u-axis is chosen to be 

coincident with the intersection of the xy-plane and the plane ef 

rotation of the dipole; then, by meaas of a transformation between 

the (x, y, z) and (u, v, s) coordinate systems [IS], we obtain 

••," r -   .   i - 
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Fig. 2 - Coordinate System for Routing Dipol« 
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•     * 
where (a , * ) are unit vectors along the (x. y. s)-axes, recpec- 

tiveiy. 

The polarisation vector »f an arbitrary polarized plane wav« 

can be written as the sum of a right-handed circularly polarised wav 

and a left-handed circularly polarised wave.   Then, for the trans- 

mitter polarization, we writ« 

where 

•»    %     •»    J* 

& =   -±-|«  -la) 

<2.9> 

•^» MM? 

and a   and a. are complex constants satisfying the relation. 

Thus the state of polarisation of the transmitted plane wave is com- 

pletely determined once the complex quantities a   and a   are known; 
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e.g.» for circular polarisation, we haw» -ithcr (a  » 1, a. * 0) or 

(a   = 0, a   = l) and for linear polarization, we have a   ■ a{ * 

**o 
(l//2)e       where Q>   is the angle between the electric field vector aad 

o 

the x-axis as shown in Fig« 1.   Similarly, the receiver polarisaüosü 

can be expressed in terms of the primed coordinate system.   Thus,. 

eB   *    a'  4+ \\X- R r 1 (2.1«) 

where 

Substituting of (2.8). (2.9). and (2.10) into (2.4) together with the aid 

of (2. 6) yields, after some algebraic manipulations, 

a =  a   fc ♦ U«      ' ♦ Le      T J (2.UI 

where 

ittt 

\*  ^TTEOTEOR (2. Ul 



It 
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C »   -j(AA«  -  BB'I (2.!)) 

Ü *   --{A 4 B)(A'  ♦ B*) (2.14)   / 

t- -£(*--Bur-Y) (2.15) 

A *   — (a  •      '- a e    ^ (2.16) 

»•■-1-ai«*ll,*?«"lS~| (2.17) 

-Oi-*4-*r~'l>"l,,]~« 

-[(*i+ a^sinßJsinSJ (2.19) 

For the case of monostatic radar (0 = 0), i. e., the same antenna is 

used for transmitting and receiving, we have EQR* E
OT* A' « A, 

and B' = B,    The quantity a   may be interpreted as the maximum 

scattered voltage with both the transmitter and receiver polarisation 
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vectors parallel to the dipole axis« 

The first term in (2.11) is independent of f and hence ifta 

amplitude does not vary with time.    The received signal consists of 

three spectral components, namely a carrier component plus the 

upper and lower sideband components separated from the carrier by 

twice the rotational frequency of the dipole.   Furthermore, the 

amplitudes of the upper and lower sideband components are in general 

not equal, depending on the radar polarization and the orientation of 

the rotation axis.   Thus, both amplitude and phase modulation of til« 

scattered signal tan result. 

Equation (2.11) is a general expression for the bistatic scat« 

tered voltage with arbitrary transmitter and receiver polarisations* 

As a special example, consider the case of backscattering of ft 

circularly polarised wave.   Assume that both the transmitting and 

receiving antennas are polarized in the same sense and that the 

rotation axis is the positive z-axis (clockwise rotation about the line 

of sight).   Using Eqs. (2. 11) to (2.19) and setting * * tt^t * ft, w« 

find 

,        .12(0 t ♦•) 
ft »   -?» • (2.20P z   © 

for the right-handed circular polarization (a   = a' = 1 and a. « al » 0). 
W • mm 

and 

■  • 
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(2.21) 

for left-handed circular polarization (a. = a' =  1 and a   * a' » 0}. 

Since the scattered voltage is a real function of time, we multiply 
♦ i» t 

(2. 20) and (2.21) by e      °  and evaluate the real part.   Hence, w« 

obtain 

1   i- 

a ■ 
2 l*J co' C(*o " 2'V ** YR3 -«HOP 

| |ao| cos :(JBÄ+ 2»r) t* Yfc] ~*~LHCP 

where Y    and Y,  are constants, <o    is the angular carrier frequency 

of the transmitted wave, and x    is the rotation frequency of the 

dipole.    Thus, the original transmitter frequency is shifted.    The 

frequency shift is either downward or upward depending on whether 

the polarization is right-handed or left-handed,  respectively.    More 

precisely, the frequency of the returned signal is shifted down if the 

polarization vector and the dipole are rotating in the same dire "tm 

and is shifted up if they are rotating in opposite directions.   This 

result has also been shown by Mikulski [ 16] and Montgomery ill} 

by means of periodic scattering matrices. 
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2. 3   The BisUtic Scattering Tross Section 

An expression for the bisUtic cross section can be derived by 

considering the power flow in the transmitted and the received waves* 

Thus, the average power received is 

«V ■ ir W o 
(2.22} 

where Z   is the characteristic impedance of the transmission line. 
o 

Substituting (2.4) into (2.22), we obtain 

is  c a 
o  o 

41 
- |EOTI2!EOR|2I(d.eT)(d.eR)|2        (2.23} 
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Let P   be the average power supplied to the transmitting antenna to 

create the field EOT*T »** ?ree »pace and let G    be the gain function. 

then the time average magnitude of the Poynting vector at a distance 

rm from the transmitter is 
T 

iSTl • 
G-P. T   T 

4n r«? 
VFis, i» (2.24) 

Similar definitions can be applied to the receiving antenna.   Thus, 

|5RI- ER       1^/   o   is     |2 

4nr« • 
(2.25) 
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where P_ «  - Z  I 
R      2    © I     is the power which must be supplied to the 

receiving antenna in order to create the field 2__e_ in free space. 
OR R *^ 

Combining (2. 23), (2. 24), and (2. 25), we obtain 

P   * 
s 

rr e 
e G_G„P_ 

HrH M-v<a-;RHJ 
(4n

> 'T'R 
(2.26) 

If Eq. (2. 26) is compared with the bistatic radar equation. 

P   * 
s 

G_C_P_X T   R  T (2.27) 

find. 

^»r0a2i(ä.eT)ca.;o)i2 
4n    o (2. 2») 

where a is the bistatic cross section and k   = 2n/\ is the free spec«; 

4   2 wave number.    The quantity k   a    /4n is just the broadside cross 
A • 

section of the dipole when the incident electric field vector is parallel 

io the dipole axis [l].   For a thin dipole, the polarizability is 

approximately given by [18], 

a    * 
T? J* 

<K¥H] 
where t and a are the length and radius of the dipole, respectively. 
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This approximation is valid when — » 1.   Using (2. II), (2.28) may 

be written as 

•f - he4u.♦"♦♦!,-"♦ »I2 
<*.*»> 

wher« 

ST*4«* 4n   o   • (2.30) 

Equation (2. 29) also applies to small resonant (tuned) dipoles 

and is approximately valid for half-wave resonant dipoles, since the 

difference between the patterns of a half-wave dipole and a short 

dipole is small.   However, the quantity a    must be replaced appro- 
• ■ 

priately; for example, the broadside cross section of a small 

resonant dipole is approximately given by [18), 

4     2- 2 
J.s*ri   .716 X o      4n (2.31) 

and that of a half-wave resonant dipole is [5] - 16}» 

o  « .86a o (2.32) 

Of particular interest is the computation of the average 

bistatic cross section of a randomly rotating dipole.   Assume that 

the initial orientation of the dipole axis in space is uniformly 

distributed and that every orientation of the rotation axis in space la 
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equally probable, then, from Eq. (2.29), we have 

I o      2n   n    „ 
 ^ _     •   f      f .„2 . „2 . . 2. <0> *   4n J     J (C   * °2+ L*> 8in 5 d? d*l 

o     o 

s   o   <C2*U2*L2> 12.33) o 

where C, U and L are the magnitudes of 2, Cf, andX, respectively, 

and the symbol <   > is used to denote an ensemble average.   If we 

denote the quantity <C2* U2* L2> by <b2>. (2.33) can bo written 
o 

as 

<0>=0o<b2> (2.34) 

Using Equations (2.13) through (2.19), we find 

<bo*> ,£{14„7/. Isotop/. |7.|V„» 

(2.JSI 

+ 2 U<V*rH*i" a'r) - ßg*»,)!»; + *;) cos B]|2} 

Equation (2. 35) is a general expression for the average rela- 

tive bistatic cross section with arbitrary transmitter and receiver 

polarizations.   Hence, if the ?adar system is equipped with polari- 

zation diversity capability, the polarization of the transmitter, 

receiver, or both can be varied to achieve either maximum or 
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minimum cross section as desired.   For the case of baekscattering, 

the average cross section becomes 

<0. > s 
D 

ft (i ♦ (|I/- H/HII;!
2
 - P;ft ♦ z 1^; ♦ ä^/} 

<i.3*» 

Since the process is random, the measured cross section 

usually fluctuates about the average value.   The probability density 

functions for the radar cross section of N randomly-oriented dipolee 

have been discussed by Borison [19]» Fielding [20], and 

Rheinstein [21]. 

2.4 Signal Correlation Properties 

The average cross section provides useful information for 

computing the expected signal to noise ratio at the receiver HO» 

[22].   However, knowledge of the average cross section alone Is not 

sufficient tor optimum radar receiver design since only very little 

information is provided regarding the fluctuating characteristicr-of 

the received waveform.   Propet design of radar receivers require s 

a knowledge of some of the statistical properties of th« scattered 

waveform.   Specifically, we need a suitable model for the chaff 

cloud from which we can deduce various statistical properties of the 

received waveform.   For des&gn purposes, the most important 
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information may be considered to be contained in the received signal 

correlation function [23]. 

Consider a chaff cloud composed of a large number of dipoles 

which are moving about and reflecting energy independently of on« 

another.   In addition, each dipole is assumed to be continuously 

tumbling (rotating) about an axis perpendicular to its length.   Assume 

that the transmitted signal is of the form 

where 

I» I 
eo(t) *   Re[s1[t)e   °] 

if it} 
?<t)   =   |?ft)|«   ° 

(2.37) 

(2.38) 

is the complex modulation envelope and JU   is the angular carrier 

— til frequency.    Let a (t) be the reflection coefficient of the k     scattered 

th and r. and r' be the distances from the k     scatterer to the trans- 
k k 

mitter and receiver, respectively.    The complex envelope of the 

received signal over an observation interval (-T, T) can be repre- 

sented by [24], [25], 

gkI(tt   +~)7<t-t.)e   ** (2. 
t^e(-T.T)      *      *     c * 

39) 

where the subscript k designates the k     scatterer, t. = (r. + ri )/c 
k       k      k 
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is the time delay between the transmitter and receiver, • ..   is the 

Ooppier frequency shirt, and g   is a complex number which may he a 

function of the positional coordinates, the antenna beam characterie- 
* * • 

tics, and other initial parameters.   From Eq. (2.11), the reflection 

coefficient can be written as 

+ I (5k, \) exp [ -i2f*rkt ♦«kJ]} (2. 40) 

The following simplifying assumptions are made regarding .   . 

the scatterers: 

(1)   The scatterers are statistically independentan* 

identically distributed. 

(2}   The distribution of the scatterers obeys Po.seoa 

statistics, i.e., the. jo»!>t probability for n reflections 

to occur in the time intervals (t., t. -1- dt. J, 

(t2, *2 + dt2) (ta. tB + itj is given by 

P<V*2 VB,dtld*2 *• 

n   *V       r  fT T =     Ü    -p-exp[-J     vCOdtld^ (2.41) 
k*l u    -T 

where v(t) is the rate of signal arrival at the receiver. 
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(3) The velocity of the scatterers and the. magnitude of 

the scattered signal are weakly correlated within the 

obse rvation inte rvai ( - T, T)u 

(4) The orientation of the rotation axis is not greatly affected 

by the motion of the scatterera» 

(5) The initial orientation angle ft« of the dipole axis la 

uniformly distributed in the interval 0 < ft. < 2ff« 
—   It»" 

For simplicity, we assume <s(t)> = 0 and the correlation 

function is given by 

-    -T vcv 

with 

s  2   Z   I       *f  fl      k    **P T-j    v<t)dt"|dt. 
1 n=0J-T    *k=l     k LJ-T J   * 

•J- * • j   P(g» »0. 5. «, a, j>d, ju^ydg• • • dxr [»»(tj)«M*2I3 ^ ...    * .    ^ 

(2.42) 

]•••]   P (ft. ao.....!fly) dg...d(Br 

= j   -.-Jp(f) <*l  ...J   ...jp«*rM»r 

■HS^BBM* 
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p(w)dw »     0  p(w)dw 

where w represents g,» ..... etc.   Substituting (2.39) and (2.40) 

into (2.42), we have 

T R*W =   K** tT)M(T)exp[-J    v(t)dt] 

k*l 

* 
KtM (T)M(T) exp [-J    v(t)dt] 

as© 

J    v(t,)'«*(t|-t') T(t2-t') dt' 

= K*     (-)M(T)f     v(t,)«*(t.-t,)>{t,-t')dt* (2.41) 
*d J-T * * 
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(2.44) 

(2.451 

M«T) = C<C2> + <U2>tÄ (2T)-f<LS>t  '|.2T|] 
r r 

♦• i«.T 

♦» (T) * J     P^ #       ^d 

(2.46) 

characteristic function of p(w ) (2.47) 
Q 

.♦• is T 

**<T>sJ P<V« r*»r 

characteristic function of p((l ) (2.48) 

and C, U, and L are magnitudes of C, U, and L, respectively. 

Equation (2.43) expresses the time-varying correlation of the 

received waveform.    However, if v(t) varies only slowly with time 

and if the observation interval is long compared with signal duration, 

(2.43) reduce» to 

_♦• 
(T) x Kv   *    (T)M(T)j      s*(u-T)s(u)du        (2. 

O   IS, 4 » 
4 •• 

49) 

where v    is the average rate of signal arrival at the receiver, 
o 

Thus, the correlation function depends only on the time difference 
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(t -t ) and the process becomes stationary.    Furthermore, if UM 

dipoles are not rotating (a   =0), (2.49) reduces te 

♦• 
R(f) = Kv^g (T)<b^>J   *s*(u-T)7(u)du (2.S0I 

d •• 

2 2       2       2 
where <b   > = <C   + U   + L >is the relative average cross section. o 

2. 5  Evaluation of Scattered Power in Spectral Components 

The computation of the received signal correlation functioa 

2 2 2 requires the values of <C >, <U  >, and <L >.   These quantities 

represent the relative magnitudes of the average power contained I« 

the three spectral components.   Assume that all orientations of the 

rotation axis of the dipoie are equally likely.   Then, from Equation» 

(2.! 3) through (2.19). we find 

<c2> "  60 {> +<l*/ " !»/>'<l*if * l*rft ~ • 

(2.51) 

<Ü*> « <L*> ■ <S*> 

•i{>*«P/-Prl
IicBiJl-P;ft —i 

(2.52) 
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The received signal depends upon the receiving polarisation 

as well as the transmitting polarisation.    Thus, by properly choosing 

the values of a.« a , a', and a' as in Equations (2.9) and (2. 10), 

the scattered power for any polarization combination can be obtained« 

In many practical situations, either linear or circular polarisation Is 

employed.   For the case of linear polarisation, we have 

2 1 2 
<C  > s   TX [1 + 7 (sin?   sin?'  + cos?   cos?' cos?}]     (2. S3) 

ow o o o o 

<S   > =   7n Cl+T(»*n<l>   sin?' + cos?   cos?» cosß)2]     (2.54) 
TTW 9 O © O O 

2 1- » 
<b   > s   — [l+2(sin?   sin?'  + cos?   cos?' eosS) ]     (2e55) 

where ?   and ?' are defined in Fig.  1.   For this case,- it is noted 
s o 

that minimum received power is observed when   ' 

(sin?   sin?'  ♦ cos?   cos?' cosß) = 0 (2.56) 
o o *> o 

and maximum received power is observed when 

(sin?   sin?'   + cos?   cos?' cosß) = * 1 (2.57) 
O O O O *" 

Equation (2.56) can be satisfied for many combinations of? , ?' , 
©     o 

and 3, while Eq. (2. 57) can be satisfied only for limited values of 

? , ?' , and ß; i. e.    (1) ß=0 and the transmitter and receiver 
o     o . 

polarizations are parallel to each other and (2) p 4 0 and both the 

transmitter and receiver polarisations are perpendicular to the 
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plane of incidence to  - + 90° and ** = + 90°J.   Similar cone la a ion» o    *~ o    *■* 

have also been observed by Borison [6]« 

For the case of circular polarisation, we find 

<C2>=   ^t(l + cosß)+ J(l7cosp)2J J2.$«) 

<S2>=   ^[(l + cos3) +Yjd + co.ß)2] (2.59J 

<bo>S    10Cl* 3 co*2^ - <*•*•» 

where the upper sign corresponds to the case when both the trans« 

mitter and receiver polarizations are circularly polarised in the 

same sense and the lower sign corresponds to the case of the oppo- 

site sense.   The received power is a function of the bistatic angle t 

and the cross section is independent of the sense of polarisation* 

2.6  Conclusions 

The signal scattered from a rotating dipole consists of &-«*• 

spectral components - a carrier component, an upper sideband 

component, and a lower sideband oompoeent.   The sideband 

components are separated from the carrier component by twice th» 

rotation frequency of the dipole.    The amplitudes of the sideband 

components are in general not equal and hence both amplitude and 

phase modulation of the scattered signal can result. 



. w****-jmw:*j<*fm*?*mx9<iwr)L'm* ^ >*»*»■ ij«e-« 

54 

The average cross section is not affected by the rotation of 

the dipoles.   For all polarization combinations of the transmitter and 

the receiver, the average cross section varies between the limits of 

77 o   and — a , where 0   is the maximum cross section.   In general. 
19     O 9     O O 

the polarization of the transmitter, the receiver, or both can be 

varied to achieve either maximum or minimum received power for 

a given bistatic angle. 

The correlation function of the received signal envelope from 

a collection of randomly rotating dipole scatterers depends upon both 

the transmitting and receiving polarizations, the transmitted signal 

envelope, and the statistical properties of the scatterers» 
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Chapter 3 

A MODEL FOR THE RADAR ECHO FROM A RANDOM 
COLLECTION OF ROTATING DIPOLE SCATTERERS 

3. 1   Introduction 

In radar systems it is often necessary to detect a target eck« 

in the presence of other unwanted echoes or clutter.   Clutter echoes 

include signals reflected from chaff, surface of the ground and sea« 

vegetation, etc.   In order that a radar receiver can be designed to    - 

operate effectively in the presence of clutter interference, it is 

important to develop a suitable theoretical model of the clutter. 

Siege rt [26],  Kerr [13], and Law«or. and Uhlenbeck [27], presented 

the first Jwo probability distribution functions for the magnitude of' 

the returned echo from an infinitely dense chaff cloud*   Kellty and 

Lerner [24^ developed a theoretical model of a chaff cloud from 

which they derived various statistical properties of the returned echo. 

The signal returned from the chaff cloud was considered as a random 

process and the scatterers were treated as points with variable cross 

sections. 

The basis for the analysis can be described as follows.   An 

35 
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RF puls« is transmitted from a radar toward a cloud of random 

scatterers moving about and reflecting energy independently of on« 

another.   In addition, the cloud is assumed to have an overall drift 

velocity.   Since the wavefront intercepts scatterers at different 

ranges, the echoes returned to the radar will arrive at a rate whftck 

depends upon the local density of the cloud.   If the effects of multiple 

scattering and scatterer rotation are neglected, the echo signal from 

a particular scatterer can be regarded as a Doppler-shifted replica 

of the transmitted waveform.   However, any change in the orientation 

«>f the scatterers can cause variations in the returned echo power and 

phase, which in general cannot be neglected.   It is the purpose of the 

present analysis to show that rotational motion of the scatterers can 

have significant effects upon the echo waveform, 

"Chaff is a form of countermeasure used against radar.   A 

chaff cloud usually consists of a large number of metallic strips 

(dipoles), which closely resemble an assembly of random scatterers* 

When chaff dipoles are dispensed from a moving craft in space, the 

effects of ejection forces, body instability, »nd other aerodynamical 

properties can cause the dipoles to rotate.    Thus, ignoring the effects 

of scatterer rotation cas result in an incorrect representation of the 

chaff model, although in many instances such effects can be tolerated 

without greatly affecting the results.    Ground clutter exhibits echoing 



-i    r . .-.. 
_;-=-.>   ,*H3*g 

characteristics similar to those of random scatterers.   Rota&oaal 

motion of the scatterers, or equivalent movements of branches» 

leaves, grass, etc., under the effects of wind forces, can become a 

major contributing factor to fluctuation of echo intensity.   Kerr Cl*] 

and Lawson and Uhlenbeck [27] presented some experimental results 

on the measurements of chaff model« and ground clutter.   In the case 

of chaff measurements, it was reported that, in addition to the fast 

Doppler-beat fluctuations a slow secular variation was almost always 

observed.   The origin of this type of fluctuation was not clear, but It 

was conjectured that the cause could be due to the rotation of dipoice* 

For the case of ground clutter, it was shown that the width of the 

fluctuation frequency spectrum was not proportional to radio 

frequency as would be expected if the fluctuations were due entirely 

to the velocity distribution of the scatterers.   At some wavelengths» 

the fluctuation spectra approximately resembled those of randomly 

moving scatterers, vhile at other wavelengths the measured results 

differed signifi eantly from the theoretically expected values.   Kerr 

indicated that this anomalous behavior eculd be due to fluctuations of 

two sources instead of one, but no theoretical explanation was offered 

to clarify this phenomenon. 

This chapter presents a refinement of the theoretical model 

for the radar echo from a random collection of scatterers.    The 
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scatterers are treated a* dipoles instead of points with variable 

cross sections.   This assumption permits the determination of the 

effects of scatterer rotation which have previously been neglected 

[24] - [27].   The theory can be extended to the study of other classes 

of clutter signal which exhibit similar echoing characteristics.   For 

example, targets making up ground clutter such as trees, grass, 

etc., will move and/or oscillate with the wind.   The individual blades 

or stems scatter energy like lossy dipoles.   For our present work« 

we ignore the loss characteristics of the scatterers.   The relative 

magnitude of energy reflected by individual scatterers is taken ears 

of in the probability distribution» of course. 

An expression for the correlation function is derived in terms 

of the characteristics of the transmitted waveform, polarization, and 

the distribution of the scatterers.   Undei the assumption that the 

cloud density is slowly varying, the process becomes stationary.   It 

is shown that the power spectrum of the returned echo consists of 

three closely spaced component», one centered at the mean Doppler 

frequency, while the other two are centered at the sum and difference 

of the mean Doppler frequency and the twice the mean rotation 

frequency of the dipoles.    The fluctuating characteristics of clutter 

echoes are also determined, and the theory is compared with some 

of the experimental results in the literature. 

-?-T—■ 



The term "rotation" used here implies» the instantaneous change In 
orientation of the dipole with respect so the direction of the radar 
during the time interval in which tht- dipole is illuminated by tite 
radar beam.   For the purpose of calculation, it is convenient to 
represent such * change in orientation by a periodic rotation about 
an appropriate axis. 

3* 

3. 2  Analysis of the Model 

Let the coordinate system be centered at the radar.   Tho 

cloud consists of a random collection of moving dipole s reflecting 

energy independent of one another.   In addition, each dipole is 

assumed to have a periodic rotation about an arbitrary axis perpen- 

dicular to its length.      The polarization of the transmitted wave is 

assumed to be uniform throughout the illuminated volume and tit« 

effects of multiple scattering are neglected.   As in Equations (2. 37| 

and (2. 38), assume that the transmitted signal has the form» - 

ist 
eo(t) «  Rs[s|t)s   ° 3 .    <3.1| 

where s (t) is the complex modulation envelope.   The returned echo 

from a collection of scatterers located at (r., 9., #.), k«l,? 3,...» 
K       K       K 

can be written as 
1 

x(t) «   Re C«(t)3 • I 
i 

*<«>* K.£-7i—V'-T>'««-V 
k 1 

. «p{iC(»0t»dlt)(t-ik)+»kte(»k. #k)J) |i.t 
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where 

K     ~   a constant 

G     *   power gain of antenna 

a     =   reflection coefficient 

dk 

2vo     *\ 
f—-— +     i *    = Dopple r frequency ft lift 

v      =   overall drift radial velocity of the cloud 

th v      =   differential radial velocity of k     scatterer 

*   velocity of light 

£      =   phase shift depending on initial parameters 

C      =   phase shift due to the antenna beam phase 
characteristic«. 

The geometry for the k     scatterer is shjwn in Figure 3, 

The rotation axis of the dipole is described by the angles §.  and Tt, 

where §. is the angle between the rotation axis and the unit-vector 

e   (*he direction of propagation) and TL  is the angle between the 

projection of the rotation axis in the d f-plane (the plane perpen- 

dicular to the direction of propagation) and the unit vector *tf    The 

reflection coefficient takes the same form as Eq. (2.40), i.e.« 

If the antenna has different gains for transmitting and receiving, 
i. e., due to polarisation changes, then G should be replaced by 

ftt 

■c> 
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V0 * *ok C^(?k* V+ ^V Vexp c+l2<a
rk

t+a
kn 

+ MSfc. ^J exp [- i H»tkt+ «kU] (S.3) 

where a .  is the broadside echo voltage of the lipole with UM 

electric field vector parallel to its axis, m . is the angular rotation 

frequency of the d&pole, C   ie the initial angle between the dipol« 

axis and the plane perpendicular to the direction of propagation, *©d 

the quantities C, U, and L are functions of polarisation and til« 

orientation of the rotation axis of the dipol«. 

If we assume that the cloud occupies a finite volume in spae« 

and the mean distance between the cloud and the radar is large so 

that the difference between the range of a particular scatterer r. and 

the mean range r   is small compared with r , we can ignore th« o o " 

positional dependence of the amplitude of the echo signal.   Hence, 

substituting (3. 3) into (3. 2) and setting r.  = r , we obtain 

K.     a 
s(t) » ~    E   G(dk, #k) aofc s(t-y exp (*i0 ft-t^-J 

o 

* 

♦L(§k, T^Jexpi-Up^t-ij]} (S.4| 
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where 

«Pc(0 = {«o ♦ a»dk)t ♦ »k + c<ek, #k) |$. 5) 
t 

V,<0* 2<«rkt**k) |3.*I 

The time statistical ««sumptions as in Section 2« 4» 

Chapter Z, csn be made regarding the scatterers.   The random 

values aok# 8fc, $^t 5fc, i^, ßk» a , a»    , and to      are taken from the 

joint probability distribution where it is presumed thai a acatterer 

is present at range r. and time t. /2.   It is shown in Appendix II tnal 

the probability distribution of the echo waveform approaches Gaussian 

as the rate of echo arrivals becomes large. 

Following the same procedure as in Chapter 2, the received 

signal correlation function is found to bo 

R(T)= K, v •       *_ (t)M(t)   |   7«(u-T).(»)4« (J.7) 
-i    O a». 4 

where 

K2 s  "~4 IK,|2<G2>< |Io|
2> «3.8) 

mt-9 
O 

v   = average echo rate 

M(T)»[<C2> + <iJ2>*    (2T) + <L2>*    (-2T)] <3.9) 
r r 
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♦• 

•   It» • f   PfrJ*        *m4 
• 

*   characteristic function of p(s)A 

♦"kit 

*   characteristic function of p(t» ) 

13.101 

(3.1U 

»«t*   is^iS and<G >. <U >. and<L > are the expected values of |cj , |ü| » 

and |L| , respectively. If we define f\'Y) * R(t)/R(o) where R(©> is 

the noise power» (3.7) becomes 

im T 

P(T)= £■— A(T)4   (r)Uirl {y 12) 

where < b Z> * < CZ ♦ U* + L*> and 
o 

A(T) 

I   S*(t-T)3(t)dt 

——a—    nil.i,  wiBi ■■«.■■til- 

f |s(t)l2dt 
<3.13) 

is the normalised autocorrelation of the transmitted signal envelope. 

The power spectrum of the echo waveform can be obtained by taking 

the Fourier transform of (3,12).   Thus, 



4S 

f(») « -Jj-C<c2>rc(*-*c) + <u2>Fi(*.»e)*<L1>Fi(«-»#|] 
<b   > 

vhtn 

F.(J») »    f p(*d) £<•-«,) d«, (3. IS) 

Fu(w) «    f     f   p(JBd)p(»r)Mw-od-2»r)4«dd«r        f3.lt) 

F^a) *    f    J   p(Jüd)p(iJr)f{*-*d+2»r)d*dd«r        (3.17) 

and ! 

(3.1») 

i 

f(i»)    *    f  A(T)«"toTd* 

is the power spectrum of U\n transmitted signal envelop«.   11M 

power spectrum is symmetric if p(* ,) and p(w ) are symmetric. 

For example, if p(u».) and p(w ) are Gaussian with means «. and c r .a 

■a , the power spectrum can he interpreted as consisting of thro« 

closely spaced components, one centered at the mean Doppler 

frequency {x   + x A while the other two are centered at (is   + is.♦ 2» ) ©      a oar 

and (ttt   ♦ • . - 2« k oar 

It is noted that the normalised correlation function and power 
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spectrum do not depend on polarisation if the effects of scatterer 

rotation are neglected.   Thus, if m   ■ 0, (3.12) and (3.14) reduce 1 
9 

10 T 
Pj*>  .  A(T)#    (T)«   • .(S.i?) 
° *4 

*Jm) * FcC**%) iitl9} 

These results are equivalent to those obtained by others [24], [25], 

provided that the echo rate is nearly uniform. 

The average backscattered power contained in the three 

spectral components can h<* evaluated by using Equations (2. 51) 

through (2.60).   Since the scattered power is polarization dependent, 

the results for the following special case« are summarized below; 

(1) linear transmit - linear receive 

(2) circular transmit - circular receive 

(3) orthogonal   linear transmit and receive' 

(4) orthogonal circular transmit and receive 

This implies that the transmitter and- receiver polarisation are 
orthogonal to each other, i.e., e_ • e* « 0. 
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Case <c2> <u2> <L2> <b2> 
o 

(1) 
2 
IS 

1 
30 

1 
30 

1 
S 

(2) 
1 

30 
1 

20 
1 

20 
2 

IS 

(3) 1 
60 

I 
40 

1 
40 

1 
IS 

(4) 7 
60 

1 
120 

, 1 
120 

2 
IS 

(3.21) 

Other cases can be evaluated in a similar fashion» 

3. 3  Characteristics of Echo Fluctuations 

The echo power fluctuates with time because of the motion of 

the scatter«?».   For simplicity, we assume in the following analysis 

that the mean number of scatterers at a given range is large so that 

the process becomes essentially Gaussian.   The first and second 

probability distribution for the echo power are thus given by [13]« 

[26] - [27]* 

Wj(P) dP «  « 
o   dP 

(3.22) 

VP2 

W2(Pl,P2,T)dPldP2* e 

P0(l-p,2>1   r
2p,/P7P?x dPl*P2 

CS.2I) 
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*?he*e I   is the seroth order modified Bessel function of the lire* 

kind, P. is the average echo power, P. * PIO» p
2 * Pf*»** 

t *   »-*,. and p' is the correlation coefficient between the echoes 

of successive pulses.   From (3.12), we obtain 

. kiT 
p.(T)«  5-Re[e   * *    (T)M(T)] 43.24) 

The corxelation function for P can be defined a« 

<P-P )(P-P0)>      <P,P2>-PO 
I(T) . *      i      *     °      *   —^ £ C3.25J 

<pi>po ***>'*» 

Using (3.20) and} 3.21), we obtain 

<Pj2>«  /W1(Pl)P1
IdPl»2P§

1 j 

<P1P2>» JJ w2(P|,P2,T)PlP2dPldP1. P*CI*P'*| 
0 0 

Thus, (3. 2$) becomes 

!<*)■ C»'!»)]1 (3.26) 

Now, we assume that both the Doppler shift and the rotation frequency 

have a Gaussian probability distribution with means 5". and •  » 

i» 
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pi, 1 =  exp r. (a - J 
4      /2l?o,        L     d    d f»°Z} (3.27) 

p(ju , s  L-_ <xp[*. (JB    J)*/2o* 1 
r      VTS*« L     r    r r J •UTo 

(3.2S) 

From (3.10) and (3.11), the characteristic functions of p(» .) and 
d 

p(» J become. 

"d 

— «    2   2 
"V '*0dT 

•        e 13.29) 

— «22 

* 
(3.30) 

Substituting (3.9), (3. 29) and (3. 30) in (3. 24) and suppressing the 

if •„♦*<>* 
phase factor e (which corresponds to mixing the returned 

A 

signal with an oscillator of frequency J» +«.), then (3. 26) becomes 
o   d 

I(t)»e 
-°dT Jt .2o   i 2 2 

♦ e [——— +  5— )cos 2» f 
<b2> o <bE>    <b2>' o o 

CS.S1) 

Since <"U*> * <L > «' <S*>. (3. 31) can be written as 



m ^^■■MVm^J'*^9^.-VSig^t^>^^!^Si!t^f4egi^^mi '^.■iV--.^.^.:--^^,-»^«^.-*.-,.;.■--^^-^ 

SO 

I(T>« • 

2 2 
•0   t 

d 

2 

 z— + 2 —r°* • cos 2« T 
<b   > <b  > r 

(3.321 

The frequency spectrum of th* power fluctuations can be obtained by 

taking the Fourier transform of I(T).   Thus, 

-ScÄ>'l-'*-H«fc)'-'*c3:,V 

o 2     2 
,0.2 «2        .0.2 «D    2 

ts2> s 

°aW>^ 

.      o.   2 •_ 2 
1 /•   a 

c,   2 0    2 

.-4CjiX-iPt.-K<)C-^) 

wher* 

0   »  */o. 

2 2 2 
0    ■   0*  ♦ 40 ad r 

0,   »   0. •+   AS 
b       u r 

(3.33) 

(3.34) 

(3.35) 

(3.3*) 

One of our objectives was to clarify theoretically some of the 

anomalous phenomena observed during early experimental studies of 
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clutter [13].   Figure 4 illustrates the correlation function for 

wooded ground clutter measured at 9.2 cm and at wind spend« of 

50 mph.   The experimental data were taken from Kerr [13, p» 387]* 

The theoretical values are shown by the dashed curve, ^hieh caa %m 

obtained from (3. 32) and (3.21) with <C*> / <b2> « f and 
o 3 

2 2 1 
<S >/<b   > =  T  for linear polarisation.   Thus, we have 

l(T).  .-•.•«•»»»•V 

r2Al    -0.30«xl©4f2        )M  .   / ._ ._. 
'LSI* C°* *25lT*irJ 9       (J»5*> 

This corresponds to a. = 1? rad/s and a   « a   »39.3 rad/s.   The 

corresponding frequency spectrum of the fluctuations can be obtained 

by taking the Fourier transform of the correlation function, MM! is 

shown graphically in Figure 3. 

It should be mentioned that the measured correlation functions 

were obtained by radar envelope measurements.   However, Kerr 

[13] has indicated that the difference between the correlation fuse-» 

tions for envelope and power is small, the maximum deviation being 

0,027,   Hence, by neglecting this small difference, the two correla- 

tions can be considered equivalent. 

It is noted that the curves deviate significantly from the »««si 

expected Gaussian «Jape.   Instead, they drop very sl@wly toward 

■*m\ 
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Fig.  4 - Correlation Function for Ground Clutter oa 
9. 2 cm (Heavily Wooded Terrain at Wind Speeds 
of 50 mph) 
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Fig.  5 - Fluctuation Frequency Spectrum for Grüusd 
Clutter on 9. 2 cm (Heavily Wooded Terrain nl 
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rero.   The anomalous appearance of the correlation function is du« 

predominantly to the oscillating character of the scatterer«.   Kerr 

ha* pointed out that a small positive asymptote has been subtracted 

from the original measured correlation function in an attempt to 

correct for the slow secular variations.    The correlation function 

has been renormalized to a value of 1. 0 at T = 0.   Hence, an exact 

comparison between the calculated and measured values cannot be 

made.    However» the close resemblance between the shapes of the 

theoretical and experimental curves indicates good agreement of 

theory with experiment« 

3.4  Conclusions , 

When a radar operatea in an environment of clutter, it is 

important to determine ail possible effects which can limit the 

effectiveness of the receiver.   If the echo waveform were precisely 

known, it would be possible,  in principle, to synthesize a filter which 

optimizes the signal-to-noise ratio at the output of the receiver,   la 

this chapter, we have emphasized the effects of scatterer rotation. 

The following conclusions can be drawn. 

1)  If the spectral spread due to the Doppler velocity 

fluctuations of the scatterer.-s is large,  then the effects due 

to scatterer rotation can be neglected.    Receiver 
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characteristics will be primarily determined ?*y tha 

Doppler spectrum of the clutter. 

2)   If the Doppler spread is small,  then ilie contribution« du« 

to rotations of the scntterers can become significant« 

This was demonstrated in the example considered si th« 

end of Section 3. S. 

,.,*«SäSB 
nmummmsm 
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Chapter 4 

OK SCATTER COMMUNICATION VIA RANDOM 
TIME-VARIANT "DISCRETE SCATTERER" CHANNEL 

4.1   Introduction 

In m.ay radar applications, communication may be estab- 

lished between two distant points by means of electromagnetic 

scattering from a collection of scatterers randomly distributed la a 

region of space.   An elementary scatter communication system Is 

shown in Fig. 6.   The region of space occupied by the collection of 

scatterers is referred to as the scattering medium.   An example of 

such a medium is a cloud of resonant dipoles (chaff) C7]-[lll.   Tb« 

basic equation relating the system parameters is the bistatfe radar 

e<juatlon9. 

Pp 
G- GB X* 

where the subscripts R and T refer to the receiver and transmitter 

parameters, respectively, and the quantity o is the scattering func- 

tion which depends upon the characteristics of the medium» 



i 

5? 

,     ] 

SCATTERING 
MEDIUM 

/'% Lx - 
*•*  •<•* i x« w 
-I \-r %C 

/ \ 

TRANSMITTER RECEIVER 

Figure 6.   Scatter Communication System 
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In j^fteral the scattering mediuri varies with both posit* ca 

an«! time.   When viewed from the transmitting and receiving terminals« 

the scatter channel acts like a linear{  random» time-varying four- 

terminal network.   Our objective is to develop a suitable response 

function for this network» 

In the analyses of random scattering, most investigators 

ignore the time dependence and are concerned only with-the mean 

power which may be provided by the channel with a sine-wave excita- 

tion.   For example« in Eq. (4.1), 0 usually represents the »verage 

cross section of the scattering medium.   In a practical situation, the 

medium is time-varying, she transmitted waveform is a modulated 
« 

carrier', and the received signal is passed through various filters* 

The design of such filters requires more information than the mean 

channel power outru* or the average cross section of the scattering 

m«4 !«#*»* 

The present analysis is an extension to that of Kelly [ 141» 

The general Ihsory of electromagnetic scattering from a random 

■collection of small metallic scatterers is developed.   The antenna 

gain functions are included in the derivation of the channel'function 

in order to take explicit ace mint ol the possibility that scatterers may 

flew in and" out ©f the volume itjuaminated by the two antenna beam«. 

Arbitrary transmitting %nd recelvlag polarfe&tione are considered» 



and the effects of scatterer rotation are also taken into account. 

Finally, specific results are obtained for the ca*e of dlpole scattering» 

4.2   Derivation of the Scattered Field 

Consider the scattering from a collection of metallic scatter« 

ers which are contained within a finite volume V.   Assume that the 

origin of coordinates is also contained within V and that all sources 

which produce the primary field are external to this volume.   Th« 

fields everywhere satisfy the Maxwell's equations. 

V X E   *    -\l    $~ 
o   dt 

VXH.   c0|f-*J 

(4.21 

where J is the source current which gives rise to the primary field. 

If the scatterers are perfectly conducting, the boundary conditions 

n*H = 0 and n x  E = 0 are satisfied on the surface of each scstterer. 

It follows from (4.2) that E satisfies the vector Heimholt* equation. 

2— — 
V x V x E + U c   --S  =   -u    If (4. J) o o ~ * o  ot 

We assume that the iir.e dependence of the fields and its 

sources can be resolved into Fourier components. 

♦• 
E(7,t)   =  ~ j"   ElT^Je^ds, etc. (4.4) 

j 
■ 

/v^-!*^K«irtS5»^-V»^v,*.v^»>*Aiy.-«Ä^%r5pj -    -     . - - -      ■ 
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Equation (4.3) become« 

V X V X E - k2E *   -ton J (4. 55 

where E = E(7,<»), J = J(r,<s)), and k   = »2u « • o o 

Application of the vector Green's theorem, together with the 

proper boundary conditions and the radiation condition for r -*•*, to 

(4. S) yields (Appendix HI) 

2 m 

E(7) * j^- { J   r(7,7'). 7(7') dv 

+ f  r(7,7") • n x H(7") dS" | (4.6) 

where 

-ik|r-7o| 

°    K     r     J 4TV |7-7 I 
'       o 

is the dyadic free space Green's function t 28 j and I is the identity 

dyadic.   Other field quantities are related by Maxwell's equations. 

The first term on the right side of (4.6) is the primary field, E (r). o 

Hence, the scattered field is given by 

2 
k Eg(r)   =  £- J   F(7,r") • n x H(7") dS» (4.8) 

where the integration is carried over the surface of the scatterer. 

The geometry for a single scatterer is shown in Fig. 7.    W» 

»■(«»■BCTSjft-jiv 
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Field 
Point 

Figure 7.   Coordinate System for a Single ScaMerer 
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i*S f* b3 she vscfs* distance from the coordinate origin to.the center 

®f Ö54 ssnttersr* and r" be the vector distance from the coordinate 

origin !CJ a petal on the surface of the scatterer.   In addition, w« let 

r   « r"«:r\   Then, la the far «one,  \ 7-7" !** |7-7'f - a' . 7 * «share 

£' Is a unit vector in the (r-rv3 direction, and 

rfrtr
s«| m   — <I-a'a')e     **    r* (4.9) 

Equation (4.8) becomes 

.?      -Ikjr-r'j *8  — 

' l*'o     4«|7-7'l . JS 

If th£ effects of multiple scattering due to the presence of other 

scatterer* are neglected and if the scatterer dimension is small com- 

pared to the wavelength, the surface current induced on the scatterer 

may be approximated by that due to the primary field alor-j.   If 

k| r  }  is sufficiently small, the exponential inside the integral may. 

be replaced by Ü + ik a1 • r ).    With these approximations, equation 

(4.10) becomes 

2        -ikl7-7'l 

" l*'o     4nlr-7'| 

a' x a' x f [ n x H (7")1 (1 ♦ ik a». 7 ) dS"       (4.11) 
-S ° • 
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Next it can be shown that» [29] 

f (»'.TjtnxHjT"J]dSM = -|-a«xf7 x[nxH fr")]dSM 

(4.12} 
He nee 

.2      -iklr-r'l k     e 
Ea(r) = -jnT"'   --       [g'KU'xp^^g'uml (4.1S) 

»      lr-r* I 

where p and m are the induced electric and magnetic dipole moments» 

respectively: 

* s 17 I C»XHOC7")3«" 
'S 

t  r - 
m =  r f 7gx [nxHo(r")3dSM 

(4. 14) 

(4.151 
'S 

Thus, in the far »one, the scatterer acts as though it were both aa 

electric and a magnetic dipole in a uniform static field.   In classical 

electromagnetism the induced electric and magnetic dipole momenta 

are also expressed as linear vector functions of the applied fields 

L: (r1) and H (r<), respectively [30]- [31], as follows: 

p ' ***9w 

m«   »• BJf'l 
• 

(4.14) 

C4v 17) 
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where a and 8 are the dyadic electric and magnetic polarizabilities 

which depend on the sise, shape, and orientation of the seatterrer. 

Now assume that the scatterers are located at points 7* 

where i * !, 2,... ,n.    By Eq. (4.13) with p and m given by Equation« 

(4.16) and {4.17), respectively, the total scattered field becomes 

.2     a     -äklr-7'f 

" 4W   i»I      |7-7{l 
* 

. {*j x C5jx^Eo(7j)1* ±- «-[xBrHoC7j)} Ha«) 
o 

In die far zone, r is far from V so «e may put a'   - a   and I r-rl|  * 

r - £ • r'.   With this substitution, (4.18) becomes r    i 

2      ä    c   •    a c    r    I 
E (7,») * 5    E   • 

4ne i*l 

{ *r*t*fxe^- Eo(7;,»n+ ji-i^xSj. H0(7j.«)} (4.19) 

2 2    2 where we have replaced k   by • /c • 

i I 
'   In order to put (4.19) in tV : form of a stochastic integral, mm 

use the method of E. J. Kelly »14].    Kelly assumes that the position, 

sise, shape, and orientation of any scatterer can be represented by 

a set of parameters, x.,x_,...,x , which we take tobe the coördi» 
i    £ v 

«» 
nates of a point x in a v'dimensional space X.   This space is a 
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direct product of the ordinary three-space V» which describes the 

position of the scatterers, and a parameter space Y, whose coordi- 

nates fix the size, shape, and orientation of the scatterers.   The«, 

specification of a point x in the one scatterer phase space is repre* 

sented by x = (r,y), where r locates the scatterer and y describes 

*• th all other parametr  a.   If x   locates the i     scatterer In its phase  - 

space, one writes a   = a(xj, 8   = ?(x ), an«? r' = 7'(x ), where 

a(x) and 8(x) depend on all but the spatial components of x and r'{a) 

has components equal to the positional coordinates included ins» 

Next we introduce an integral-valued measure, N(S), of measurable 

sets in the v-dimensional phase space X, which describes the collec- 

tion of scatterers.   If S is a measurable set in X, we take N(S) tobe 

the number of scatterers for which x. belongs to S.   In this manner, 

Eq. (4.19) may be written in the form of the Stieltje's integral« 

?,-   . .      j»       e    r    „     er     1* E(r,u») =   - —-y  ——     I    e 
4nc r JX 

. U xCs,xa(rlEJr'UM + Y-Z X8(x*)-H(7'(x),e)] dNfJj 
irr o « c   r o J 

Us tog E<|.  (4.4) or taking the Fourier transform, we flad 

J   efrBiqiöPjpjWM-i«^ 
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+• 
E§(7.t) = - -^j- j dN(x) J J- {irxl£r* a(x). Ea«7'{x)..n 

8n c r    X •• 

,    ..-.---     ,   {»ti-f ♦!«. T'cSiJ 
o 

1 
(4.21) 

Sine« 

2- .- S .- .,   -l«t. -•EO(7,«) =  f  Ejl7.t)*mtm** 

Equation (4.21) becomes 

»    r (7.t)=  r j   {£ *[£ xä(x).f (r'(x).t- J + £* • 7«( x»3 

+ ~ *r
x 8(xJ- Ho(7'(x),t-| + i^-7«(x))}dN(x) (4.22) 

If £ probability measure is impressed on the sets of X, £q, (4.22) 
* 

can be treated as a stochastic integral« 

If the scatterers are slowly moving or changing their sis«» 

shape, and orientation «ith time, the measure N then becomes tims- 

dependent.   If w-e assume that all these motions are slow with respect 

to the period of the primary impressed field, Eq. {4,22) will remain 

valid with dN(x) replaced by dN(x,t). 
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where 

( 

1*       J/2 

4wr— 

(4.25J 

% 

6? 

4.5   Derlvaiion of the Channel Function 

A «turne that a transmitter is located at a vector distance r9 

from die origin and that the collection of scatterers, which produces 

the scattering, is in the far sone of the transmitting antenna*   If a 

real signal f(t) is applied to the input terminals of the transmitter« 

then, in the scattering region, the transmitted fields can be repre-   ' 

s en ted by 

Eo(T.t) = KO/GT<7) ^[t+iay tf-7T)] 
K  (4.24) 

I s 
:' 

1) =   l\x I'    is the intrinsic impedance of free space, G    Is the gala 

function of the transmitting antenna, £    is a unit vector In th» r_ 

direction, e    is the electric polarisation vector, and h    ~ -a   X l_ 

(the wave is propagating in the -a    direction).   Substituting $4.24) la 

(4.22), we obtain 

'   .? 
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E^r.t)»--^ 
4n« r 'X 

J   [GT(7«(x)p,/2{arx[ arx;(x).eTl45rx8<a}.^} 

f [t- i (r+rT) + I (5T+ £r»T'(x)]dN(x.t) (4.26) 

Next, we assume that a receive? is located at a vector Ms» 

tance r   , also far from the scattering region.   Then, for T near "v  » 

we have 1/r « l/rR, a^ M aR, and r w rR+ a   • Ü-O» «here a    If a 

unit, vector in the r    direction.   Equation (4.26) becomes 

E.(r.t)   *   J   CCT(7'«x)»]l/2w(x) 

wher« 

<o '  c (V V 

is the total time delay from transmitter to origin to receiver, and 

.—      m       \ 
wU)   =   |— (a'Rx[»RxäuMTMRXB(x).hT j (4.28) 

4nc r_ 

Now, Equation (4.27) can be put in the form 
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4 

Eg(7.t) « j    |'[GT(7u))3l/2w(JrMCt---|(r.7R».^J|3 

* C •-*„♦ ~ (*T+ 5RJ.7'(x)3d. dN(x. t) (4.29) 

where &(•) i» the Dirac delta function.   In this form £   represents A 

superposition of plane waves, propagating in <he direction of tit« 

receiving antenna« v4th slowly varying amplitudes»   Let I    be the 

polarization vector of the receiving antenna and G    be its gain fane« 

tion.   Then, by flux considerations, the plane wave 

propagating over the receiving antenna, will produce a signal 

J=r= 7GTGa  «•»••*•« •f^njT  s    T   H       « o . 

at the antenna terminals, «here G    is the gain of the receiving a*.ten- 

na in the -a. direction.   Since the scatterers are in motion, the 

scattered signal will in general have a time-varying amplitude and 

phase.   If *e assume that the receiving antenna is sufficiently wide- 

band to follow these variations, the total received signal will be 
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TO •« 

h(t) »==4=r  f  J   [GT(r'«x))0B(7'(*))3U2C«1|. «U)l f'ft-«) 

O    C IK 
(4.30) 

For convenience« we let 

«    1/2 1/2 
CGT<r'K5R(r'N      - CCOTGOR?     G(r') {4.311 

where G _ end G ere the maximum gain of the transmitting and 

receiving antennas» respectively» and G(r') Is the normalised gala 

function relating the product of the two antenna gains.   Substituting 

(4.28) and (4.31) in (4.30) and using the value of K   from (4.25), we o 

find 

h(t)   =    j—^-j     ?  G(r,(x))CeR.ft(x)-eT*fiR- P(x). h.yl 

f'(t-i) 6[t-t +-(a-+a_)-P(x)]dsdN(x,t) 
O    C        I M 

(4.32) 

where 

A    » 
G__GÄÄX OT  OR 

(4«) rT rR 

(4.33) 

and we have made use of the fact that e   • a   = 0 and h   * i* S   . 
R     R R      R      R 

If the overall scattering process is regarded as a random 

time-varying channel, we may put 
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Mt)   =   j  k(t,a}f(»-•)<!• H.34) 

where k(t, a) is the response function ©f the channel.   If 

Chen 

where 

00   *  ~ j' F{.) •h* d« 

• 

K(t,.) = J k(t.«)«*toÄd» 

H.35) 

(4.36) 

(4.36) 

Following Kelly, we will call K(t,») the channel function.   From 

(4.32), (4.35), and (4.36), the channel function ?**Cjrnes 

i»l. 
K(t.»)=Ae ,   G(r'(x))Q(e),x)e 

where 

1      ** dN(x*0 

(4.37) 

QKx) *    ~r~ t e   • O(x). e   ♦ fi   • 8(x). hi 
^4nV      * T    * T 

(4.38) 

This is a generalisation of a similar result obtained by Xelly [143* 

In (4.37) the collection of scatterers behaves as it were a dispersive 

medium.   The response of the medium is described by the channel 

function.   In the stationary case N is independent of time, and the 

2 
frequency response is proportional to •   since our analysis ha« beem 
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based on the static pola disabilities of the scatterer*.   If the scatter» 

ers are not small, our procedure remains valid if we allow the 

polar liabilities to depend on frequency,   !n this case« Eq. (4.37) 
m — as •* SB        «* at       »a 

still holds with a{x) and B(x) replaced by s(»,x) and 8f»,x). 

4.4  Example:   Dioole Scattering 

Consider the scattering from a collection of axially symmetric 

scatterers O.e.» cylindrical dipoles).   The electric and magnetic 

polarizability dyadics for axially symmetric scatterers can be repre- 

sented by 

* * • • •» 
a «. a  dd ♦ a_p» 

8  = 3jdd ♦ 02p» 

where d and p are unit vectors parallel and perpendicular to the axis 

of the scatterer, respectively.   The components of the dyadics a and 

0 are complex function of frequency and the sise and shap« of the 

scatterer.   The transmitting and receiving polarisation vector* can 

be written a« 

*T*   <a.eT)a, + fp\eT>? 

Hence 

.    i 



WWW   ' '" "" ' I  gBW* !W5 """"" ■ X-■' "OIRPWB« «B IHIHMWINilj 

and 

TO 

v v v t<vV(5* *R,(*'V * V v V3 <4,4IV 

V *• V C(81_ V<5*fiR,(5* V + B2(V V1 (4*42) 

For th?n dipoles, the magnitudes of a , 0 - and 0   are small 

compared with a •   Then . 

.*« 

V4n e 
(4,45) 

and the channel function becomes 

A m 
K(t.s)) =  T=r-ä«      ° f * 

2     -'-•'of    +if<W,7,(*) 

Vw 

[01(«..x)(d-eR)(3.ST)]dN(x,tl (4.44) 

where a (N,X) depends on all but the orientation coordinates included 
•* ... 

tnx. 

Rotational motion of the sea toners can be taken into 

by allowing the orientation vector d to become time-dependent.   It has 

been shown  n Chapter 2 that the quantity (d. £_)(£• e   ) may be pvt 

in tke form 

(d. lR)(a. IT) « Ce* 0.*12** Le*121 ) <4.4S| 

^.IJWiiliSSillillli'lM'T  I UM WH 
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where C, U, and L are functions of the orients iion of the rotation 

axis of the dipole, and f is the instantaneous orientation angle of 

the dip»!« axis.   Comparison between (2.28) and (4.43) shows that 

the quantity   | Q(tc,x) J   has the significance of the cross section of aft 

individual dipole.   If all orientations of the rotation axis are equally 

likely, the average cross section is given by 

< |Q{»,x)i2> *   o   < V*> (4.46$ 

where a   is the maximum cross section» and o 

< b2 >  -   < C2+ U2* L2 > 

which has been evaluated in Chapter 2 (Eq. 2.35).   In the preseut 

chapter, the bl static angle 6 (the angle between the directions of the 

transmitter and receiver, viewed from the scattering region} Is 

given by 

cos B »  i    • a (4.47) 

4. 5  Statistical Properties 

In the previous sections,,, we have derived results fo? the 

scattering from a definite set of scattercrs in space.   In this section, 

we «iU examine some of the statistical properties of the channel 

output. 
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The collection of ecatterers is described by an integral-valued 

measure, N(5,t)* of set« in the one-scatterer phase space X.   Sine« 

the scattering is random in nature, N*5,t) becomes a randomly time« 

varying random measure of sets in X.    Poisson statistics ere 

assumed for N(S, t) so that the random variables N(S.,t),... ,N(S ,t) 

are independent if the sets S »... ,5   are disjoint, and that the 

probability that N(S, II equals the integer n is given by 

r Ti n 

a* 

where < N{S, t) > *   E N(S,t) denotes the average number   of scatter» 

ers in set S at time t.   We assume that the measure < N(S,t)> has * 

density < n(r, I) > so that 

<N(S,t)>=   j    <n(x,t)>dX (4.49) 

where dX is an infinitesimal element of volume in the phase space X. 

If we let 

wf  «   f    W4{x)dN«x,t) ,    1*1,2. (4.50) 

theft 

Ewj= j   WtUi < a(x,t) > dX (4.51) 

The symbol E zlso stands for the expected value or ensemble 
average.   We will use these two notations interchangeably. 
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C4.5S) 

Cov twj.w^ x J  W^xJW  (x)<nU.t)> dX (4. S3) 

Now, from (4.34) and (4.36), the channel response function 

may be expressed in Swo useful forms* 

*» 

h(t)  *  Jk{t.*)f(t-e)ds 

where 

we find 

and 

o 

1     f Is* 
2^ j    K(6,B)F(s))«™*ds) 

4« 
ML.)  = lj j K(t..) «l- d. 

r 
2h{t)   =  j   FkCt,s)f(t-8H» 

j-  j   E K(t.B)F(s))e"d« 

(4.S4) 

|4, S5) 

(4.56J 

Cov[h(t».h(t')1 = j j Cov[Mt#.).k(t'..'J]f(t-sK(f-s')dsds' 

1       p 

#77 i J Cov[K<t»w>»K*u,.*,nei(B,fe-,B,t,V(»)Fs((.')d«dsi' 

(4.57) 

The two channel covariances are ielated by 



n 

cov[k(t.s),Mt',«')]* —-^ j jc<w[K(t..).K*«f.»'n«lf**"*,",|*«d«« 

Equation (4. 56) implies that the mean output to f(t) i« deter- 

mined by the meat properties of the channel.   From (4.37) and (4. 51), 

we obtain 

-'•»or   ,!(W,',(*> E K(t.»)   «  A •       ° j   • C      T      * 

G(7'(x)) Qf»,*i < n{K9t) > dX (4. $9) 

Recall that x = (rty) so that dX = dV dY, and Q(w,x) depends only os 

the y-parameters. Furthermore, in maty situations, it is possible 

to put 

< n(x.t) > -  f(y) < n(7,t) > (4.60) 

where < n(r,t) > is the r «an number density in the ordinary space? 

and f(y) is the probability density on the y-parameters, which may 

also be time-dependent.   Then, Equation (4. 59) can be written In the 

form » 

EK(t,i|   =  A e       °< Q(«,y)> 
9 

|2 (£-♦£-). 7« 
•j    eC     T     R G(7')<n(7',t)>dV (4.61) 

where 

mmKMmtseMma* 
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< Q(».y) > « f   *(y) Q(«.y) dl 

7S 

(4.62) 

In the dipole scattering example of Section 4.4, if w« aseom* 

a uniform probability of all orientations at any one time, we find 

«fd-Ve-V'-rW 

3V4T«2    *        R    T 
(4.63) 

where e    and e    must refer to the same coordinate system.   In terms 

of the notations used in Section 2.2 of Chapter 2, we put 

*_ * 7 I ♦ a. £ T        r * 

e_ s  a' JC * »• «*• 
R        r A 

Here e    and e    are the polarisation vectors referred to the trans» 

mitter and receiver coordinate systems, respectively.    With the aid 

of the rotational transformation given in Eq.  (2.6), we compute 

«o*e*ys    (*.»' +* *') cos   f-U,a' + fc a')sin   | ! (4.64) R     T^    L   I r     r J'        . 2       i *     r r 2 . . ' 

This expression can easily be evaluated once the transmitter and 

receiver polarisations and the bistatic angle are known. 

The covariance of the channel output can now be investigated, 



wm^m^^mfmmi^mmf w 

Since the scatterers are in motion, «e begin by examining the flow 

of the variables x * (r,y) in the phase space X.   Consider two 

elements dN(x,t} and dN(x',t').   Suppose that x flows into x. as 

time Roea from t Co t and x, flows into x' as time goes from T to t*t 

where t = (t+t')/2.   For sufficiently small values of t-t', we may pot 

and 

*».--.(¥*) 

-••v^(¥) 

(4.65J 

(4.66) 

where x is the rate of change of the position vector x in the on« 

scatter«r phase space.   The» 

w   *   |   W(x)dN(x,t) *   f wfxj-x^^^jdNCXj.t) 

W * j w(x*')dN(x\f$ = j w[x2+x2^^~JldN(x2.F| 

• • •        • 

where x. = x  (x ,t)andx   = x_(x,,tl.   It follows from the assump- 

tion of Poisson statistics that 

Cov[w. w«] ' JE W [^x-x(^/M * ♦ *C TV •< n(*'*>>dx   *4'67> 

e 

where we have assumed that the velocity field x(xvt) is statistically 

■ 

»SreSäP 
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independent of the measure N(S,f). 

Using {4.V7) and making assumption (4.60), we obtain 

Cov [KCt.»),K*et".»'J] =   A* exp [-i(»-»*)t ] 

"•y*ykT">JQ*LÄ',y+yCV>]£(y).<n<r,'t>> d *'dY 

* A* exp [ -i(«-«')to] J  exp [ I («-••)(*T+ «RJ- 7» ] 

E{exP[.i(.+.')^)(5T+£R|.v(P.t")] 

G[7'-v(7'.r)(^lc*[P+v(7',Ö^)l}< n(?.Ö > dS7- 

j   EO[.,y-y(^}JQ*[^,y+y(^}1f(y)dT C4i68| 

where v(r,t) = r(r, t) and w,e have assumed that v and y are indepen- 

dent.   Let F(v; r»t) be the probability densUy that a scatterer ha« a 

velocity v at ("t, t),, Eq. (4.68) may be written a« 
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• 1 

Cov [K(t,«^.K*{t^•,)] *  A    exp [-!(•-«')(-] 

J E Q[«,y-y^y)] Q*[«j,y + y (y )] %) dl 

Jj{ explc (
*-

W,,
<*T

+
 V" *']} F(*s''»^ 

exP [- ^ «»♦»•)(1ji)(»T+ iR). 7{7',7)] } <n<7',7) > d37ds7« 

(4.6f) 

We assume that Q(u>,y) is sufficiently wideband, so that 
■* *• Q(u>,y) « Q{tt> , y) sver the signal bandwidth, where •   is the angular 

carrier frequency.   In addition we assume that — (t'-t)B < < 1« where 

B is the signal bandwidth.   Substituting (4.69) in (4. 57), we obtain 

A* 
Cov [MU.taft'n *    —?T W(« ,*•-•» 

j j•{ j'rw .xp [i.{,-.o+ *«,♦ V'P^W&Ol^M *• 

J   FV) exp[-l»'{f-to+i(aT+£R)[7'+7(7',7)(^-t)]} d«'} 

c[7.-7(7-.7) (£*)] c*[7 .7(7..M (£*)] 

F(7;7%t) < n(7*,T) > dS7d57' <«.W» 

where 
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(4.71) 

Again the method and results given above are a slight generation of 

those given by E. J. Kelly in Reference C 14}, 

•* 
For the dipole scattering example, the y -parameters include 

tt 1J, and f  (see Fig. 2), where the angles 5 and T) define the orien- 

tation of the rotation axis and f = <a t+a is the instantaneous orient*» r 

tion angle of the dipole with respect to the u-axis.   Here m s ♦ and ft 

is the initial orientation angle.   If we assume that every orientation of 

the rotation axis is equally probable and that the initial orientation of 

the dipole axis is uniformly distributed in the interval 0 <Ct <2n# we 

Had <' 

4 v 
Wfl» ,T» *  -£-j |a>j|2r<C2> + < U2> *    (2t) + < L2>»   (-2T)"| 

°        -One4     l   °     L *r mr       J 

(4=72) | 

where T = t'-t and f    {T) is the character! stic function of p(u» ) defined 
•r r 

ir. Chapter 2. 
s 

Sine« 
■M» 

f(0  s jü J Fj»J«l-tds 

and f(t) is real so that F*(-w) = F(»),   Equation (4.70) may be written 
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Now f(t) can be written in the form of a modulated carrier. 

«3 

Cov [h(t).h(t')] »  A* W(» ,t'-t) 

1 ._- 

F<7; 7«.7) < n(7',7) > 4*7 «J7« C4.7S) 

-    . j 

f(t)  "  m(t)coa [» t ♦ <? (t)l 
o        o (4.74| 

Substitute (4. 74) in (4. 73) and assume that m(t) and tp (t) vary only 

slowly compared to cos «u t.   Then, by keeping t'-l sufficiently small, 

we may drop the term — (^T
+a*»)# v(rtt)f-~- i from the arguments 

of m(t) and 9 (t).    We then use the sum and difference identity on tb® 

product of cosines and drop the sum term because of its rapid varia- 

tion with r'.   Equation (4.73) become* 
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Cov [h(t),h(f» *   | A* W<o .*'-*) 
coo 

m[t.tp+i(fiT+ÄR).7'3mCf-t0+l«T**RJ. ?] 

cos [ -^(äT+5R)-7(r'8t)(t'-t)T <n(7\t")> F(v*;7',r)dS7 d37« 

(4.75) 

The variance of the channel output can be deduced directly 

from (4.75).   Thus 

Varh(t)   *   CovCh(t), h(i)] 

4Ao W{»o)MG(7')iy[t.to4(aB
T+aR).7'] < n<r\T)> d*7 

(4.76) 

where 

W{»o) = <|Q(u>o.7)l2> S   J    |Q(»o.y*)I2f(y*)dY (4.77) 

1     2 The quantity   — m   (t) is proportional to the average power being 

transmitted at t.    Likewise, Var h(<) is proportional to ihe average 

power in the fluctuating component of h(tj, received at t.   Recall that 

, X2 G_ G_ 
A *   - T    R 

*     i 

(4n)   rTrB 



ii mpi ■    ■—"■"- ' '    ' mmmw**mmmmm&gKn 

•s 

hence» One quantity 

W (•oJ J   IGCP) j2 < n(7«. t) > d* P 

has the significance of channel cross section. 

For the case of backscattering, both a_ and £_ are in tfcs T II 
direction of the antenna.   However, the antenna may have different 

polarization for transmitting and receiving.   If one introduces a 

coordinate system (x,y,z) with the s-axis in the negative (£_,+1J 

direction, and assume that the antenna gain is nearly uniform over 

the cloud of scatterers, then the cross section per unit range is 

given by 

pr o(z'.t) = W(«o)jj <nlx\y',s';t)^ d*' dy« (4. 7SI 

This represents simple incoherent scattering from a collection of 

independent scatterers, i.e., the total cross section is equal to the 

average cross section per seatfcerer times the mean number of 

scatf erers illuminated at time t. 

For the dipole scattering example, we have 

l2   -2. ~Z. -Z 
4 
o wte) =  —=rla>ji<c ♦«*♦«■.>' 

° 4nc        l   ° 
W.**> 

! 
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Chapter 5 

SCATTERING BY RANDOMLY VARYING CONTINUOUS 
MEDIA WITH APPLICATION TO COMMUNICATIONS 

5.1   Introduction 

Interest in the problem of establishing long distance commu- 

nications via forward scatter has motivated the study of scattering 

from a perturbed region of space whose electromagnetic properties 

vary randomly with spac« and time.   In tV - previous eUapier, wo 

studied the properties of a "discrete scatterer" channel, in which the 

scattering medium is made up of a collection of metallic scattersrs 

randomly distributed in a region of space.   The scattering charac- 

teristics were expressed in terms of the electric and magnet« 

polarizabilities of each scatterer« 

In the present chapter, the properties of a "continuum" 

channel are examined.   The constitutive parameters of the medium 

are assumed to vary randomly with both position and time.   The 

scattering characteristics are expressed in terms of the electric and 

magnetic susceptibilities of the medium.   General time dependence 

is assumed.   An expression for the channel function is derived in 

86 
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term» of the scattering properties of the medium.    The approaches 

being token here are parallel to those of Kelly [ 14]; however» 

slightly different techniques are employed to derive the scattered 

fields.   Also, the «.fleet of tntenna gain is explicitly taken into 

account in order to allow for the fact that scatterers may flow in and 

out of the volume illuminated by the two antenna beams.   The theory 

is developed in a general manner so that it may be applied to the 

study of a wide class of problerr.s; e.g., scattering by a turbulent 

and tnhomegeneous atmosphere, ionized gases, and f    bulent wakes. 

5.2   Scattering by Continuous Media 

Consider a scattering volume which is filled by a random 

continuous medium. The interaction of matter and the fields are 

described by 

D   *   « E* P (5.1) 

if  *   — B-M (5.2) 
© 

where P and M are the electric and magnetic polarisation vectors» 

respectively.   Outside the scattering volume, we have free space» 

and the polarization vectors vanish.   The electrcmagnetic fields 

everywhere are governed by Maxwell's equations 1ST]» 
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(5.4) 

<5.5) 

(5.6) 

where P and J are the charge and current densities which give rise 

to the primary field.   The presence of the material medium is thus 

| — 
ac counted for by the polarization charge density - — V • P and th« 

polarization current density   ^r-  + V X M. 

The electromagnetic fields can be expressed in terms of the 

Herts potential fi(r, t) 

x2fi 
E   *   77.Ü.UC   5-5- 

°°  St* 

B   *   |i » ▼ X 4J± 
o. o 5Jt. 

(5.7) 

(5.8) 

where n satisfies the differential equation, 

o*5 _       1  =,- ..      1    -* r ii ^ s ^jr = - ~P«7.t) - ~ J [ j<r.r)+ vxM(7.t")]dtM 
o o at o   o 

The solution can be written as 

(5.9) 



•9 

5(7. t) * ~ {Jj p(7'. t*)G<7, v, 7«e t«j dv dt« 

t1 

r ♦ Jj J dt"[ J(7',t") + ?'xM(rl,t',)lG(?,t;7*at
,1dV,d«*l 

C5.10) 

where 

r      l7-7'l i 
G(7,t;7',f) =   -J=—r S J 

4n| r-r'l 
C^III 

it the retarded Green's function for the scalar wave equation (Appen- 

dix IV).   The Herts vector for the primary field is given by 

no(7, t) *   ~ JJ[J   *<*'« tH)dt"]GC7, t; 7«. V) dV'df ($. 12) 
o o 

Assume that all sources which produce the primary field are external 

to the scattering volume. Then from (5.10), the Herts vector for the 

scattered field is 

ffg(7.t)   =   i-iJjP(7\t')G(7,t;7'.t')dV'dl' 
o 

t* 
+ JJ[J  V•xM(7•.t,,)dtM^G(7.t;7'.t•)dV•dt•]        CS.il») 

where the domain of integration is the scattering volume in «hieh P 

and M differs from sero.   From the vector identity V* X GM * 

G ▼' x M - M x V'G, we have 



F(nxM)GdS'   *   f GV'xMdV - f MxV'CdV 
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(5.141 

where the integral en the left is extended over the surface enclosing 

the scattering volume, and n is the unit outward normal to this sur- 

face.   Assume that the scattering volume remains within a finite 

closed surface» which is made large enough so that the surface Inte- 

gral in (S. 14) vanishes.   Equation (5. 13) can be rewritten as 

ffa(7. t) =   — Jj { P(7% f)G(7. t; 7». V} 

+ j    KKr'.fJxV'Ctr.^r'.t'HrjdV'dt' (5.155 

From (5.7) and the relation VGfr.t; r'.t'l = -V'G(r,t; r'f V), «he 

scattered field become« 

Et(7, t) =   £- jj [ P(7», V) • ▼• ] V'G<7, t; 7'. 1*1 dV dt' 
• 

.2 

2 f 
'»0— jj{J   M(r,.t")xV'G(7,t;7'.l,)dt"ldV'dtl 

dt © 

Let the origin of the coordinates be located within V and 

evaluate the scattered field only in the far sone, dien 

(5.1*1 
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I r-r* I  m r - a • 7* . ' ' r 

4nr     * c    «    r 

Mx V'G m ~— {a xMU'|i'.|t-.-8 . 7»! 

4nc2r r     r «    c    *     ' 

where a is a unit vector along the r-direction and 6* indicates 

differentiation with respect to its argument. Substituting these 

quantities in (5.16) and making use of the formula. 

we obtain 

j f(x) •***-•) dx   =   (-lftMM 

- ** — — I 

4nc r 

♦  -*rxj  M(7'.t-|*i£r-7')dV'} (5.17J 

where P = —7- P and M * —y M.   The scattered field can be inter» 

preted as arising from a distribution of induced electric and magnetic 

dipolc moments per unit volume of the scattering medium.   The sota» 

tion will depend on the manner in which the polarisation depends on 

the external field.   If we assume that the dependence of p and m on 

E and H, respectively, is linear, we can write 



n 

Pfr.t)  *   «o j     X(r.t.s). E(7,i«s)ds (5.18) 
o 

M(7,1)  =   [   f (7, t. a) • H(7, t-s) ds (5. J 9) 
© 

where   X and y are the dyadic electric and magnetic susceptibilities 

of the medium.   Equation (5. 18) and (5. 19) also rxprecs the fact that 

the induced polarization must not precede in time the field whicfe 

produces it.   If X-(r,tfs)and   U(r» tt s) vary slowly compared to the 

primary field variations, the» 

P(7.t) m   cft  j   3c{7,tts)» E(7,t-s)ds 

M(7.t) «   J   ^(7,t,s)« H(7tt-s)ds 

Further let us assume that the presence of the scattering medium is 

a small perturbation of free space conditions so th?t the scattered 
A 

energy is small compared to that of the primary field.   Then we caa 

use the Born approximation, replacing the total fields E and H by 

the primary fields E   and H    within the integrals.    With these 

assumptions, Equation (5.17) becomes 



9S 

j,(7.t)* —2» {*rx { J(£rxCÄ7',tf.).Eo(7',i-|+I*r.7'-.j}|dr*i 

*]r £
t*i lf(''.».«)-Ho«7'ft-| + Ifr.7'-«)]dVd«     (5.20) 

r      1  m      — » where we have replaced (t-- + -a * r') by t in the arguments of X 

and Jf since the medium is slowly varying.   This is the same a« 

Kelly's result except that here * and  H are dyadics instead of 

scalars. 

5.3   The Channel Function 

The channel function for the continuum case can be derived la 

the same manner as for the discrete scatterer case.   However, 

because of the similarities in the formulism between the two types 

of scattering, a direct analogy can be established so that the results 

developed for the discrete scatterer case can be applied immediately 

to the continuum case.   Comparison betweeit (4.22) and (5.20) shesrs 

that the two expressions arc equivalent if we put 

a(x) 6(s)dN(x.t) —    "(^.t.oMV 

B(x) 6(s)dN(x,t) —    fc(7',t,s)dV 

Thus, from the results of Section 4.3, Chapter 4, we find that the 

channel function for the continuum case is given by 
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K(t,tt) = A  e 
-iwft 

°T niTtwi^Ti G(r')Q(r',t.e)e c     T     R 
dV« (5.21) 

where 

Al 
COT CQRX 

• *a«*J    *    * «41»)   rf r 

Q(r,t.«) = 
V4ne2      R '   -T   "R ——   "T 

(5.22) 

[ e. • X (7. t.«).£_+£* Y(7. t. •) • h_3     «5.23) 

X(7,t,v)  *   f    X(r,t.s)e   ""de (5.24) 

Y(7.t.»)   *   J    jJ(7,ts.)e"ltN,d« (5.25) 

Other quantities are defined in Chapter 4. 

The condition of rcalizability requires that the polarization he 

zero for s < 0.    This implies that X(r,t,w) and Y(r,t,w) must be 

analytic in the lower half of the complex w-plane.   Since 

t - — (aT
+ ä   ) * r'  >  0 for any point in the scattering volume» li 

follows that K(tvtt>) is also analytic in the lower half »-plane. 

For simplicity, we restrict our discussions to a scattering 

medium which contains only a single constituent, since the generali- 

zations to the case for which the medium contains several constituents 

are straight forward.   For a continuous medium with one constituent, 

having number density n(r,t), we may put 
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X(r,t,«)   =  X(»)n(r,t) 

Y(r.tt«)   =   Y(«)n(r,t) 

»S 

where X(w) and Y(t») describe the dispersive properties of the 

medium.   Thus, the channel function can be written in the form 

K(t,®} = AoQ(»)e      °j   G(7'Je C     T     R       n(7'.t)dV       (5.26) 

where 

Q<»)   =    -^ [ lR. X(»). *T+VY<«) • hT] 
VJTc 

(5.27) 

As an example» we consider the scattering by an ionised gas 

(plasma).    We assume that the medium is non-magnetic so that 
as — 
Y{r,t,s} = 0.   The eiectric susceptibility takes the form [40) 

X(7,t.»)=--S-   #^&" 
mt     w(»-iv) •o 

{5.281 

where I is the identity dyadic, e and m are the electron charge and 

mass, n(r,t) is the electron density, and v is the collision frequency. 

Thus, 

€><■») =   - —i-y -2—C-Ä—Ns .* ) 
»4« C O 

(5.29J 

and the channel function become* 
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A 2 v -i«t 

j G(7')e C      T      R n(7'.t)dV {5. 30) 

The channel function can be computed if the density profile 

is known.    For example» let us consider a hypothetical model of the 

plasma for which we take to be a spherical column with a density 

n(r\t>   -  n^e *      j   a(t) > Q (5.31) 

where r' is a vector measured from the origin within the plasma 
* 

column« a is a constant which has the dimension of length, and a't) 

is a time-varying parameter* which defines the instantaneous six« of 

the plasma column.   For simplicity we assume that the antenna 

illumination is uniform, G(r')~ 1, and that the plasma is collision- 

less, v~0.   With these assumptions, (5.30).become« 

A       • «ig! 
K(t.«) = -   -d= -?  <VO«       * I* 

rTr -•|pl*,c«,.y,.»,)l2 ft5<*T
+0-»,f*'.y,.«,l 

JJJ •   * e €     T     R dx« dy' ds' 

(5.32) 



9? 

2 2 2 where a»   • *  n e /m* .   In (5.32) we have assumed that &(t)/a   li op        o o 

large enough «o that n(r',t) is a rapidly decreasing function of | r'| 

and the integration may be extended from -» to +••   Sine« 

7»   =  ix'Uy1 ♦ i a' 
x y s 

and a„ and a. an unit vectors from the origin to the transmitter 
T R • 

receiver, respectively» so that we have 

a    =   a   tin 6„, cos 0„+ a   sin Qm sin 0-1+ £   cos i_ 
Tx T TyT T« T 

I_ ■  a   sin 6„ cos 0„ + a   sin 8„ sin 0„ + a   cos 0. 
R        x R Ry R R     a It 

Equation (5.32) may be rewritten a« 

2 

V?n    c2      R    T 

£ ° nr <*,2+ y,2+ »,2>l~ <V* V+ V*5 
fffe   »* ec    x        >        "    dx'dy'd«' (5,S3) 

where 

=   (sin 0T cos #T+ sin 0R cos 0R) 

=   (sin ew sin *   -» sin 0» sin 0.J 
T T R « 

Ti   *   (cos 0_ ♦ cos 0_5 
a T R 

Carrying out the integration in (5. 33), we obtata 
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3   2 

(5.34) 

Noting that 

2   „2X    2        .        2 0 
\    \    \   * 2 (5.35) 

where 8 is the bistatic scattering angle» 

$ »  coo"*(£  . £  i 
T     Rr 

Equation (5.34) becomes 

3   2 A ns • 

2 e a      et) 

exp    - i«t^-    ^2 

22 
a « 2  | 
    COS      ST 

o     c°"a(t) ] (5.36) 

From C4.36) the chanael output is given by 

h<t)   =  JJ j K(t»W)FC»)ei#ld« 

Assume that the transmitted signal has a Gaussian envelope» I.e., 

.22 
l(t) - iBfZfi) exp [-B*t*/4], SO that F{®) takes the form 



F(«)   »   exp C-«2/B2] |5.J?> 

Using (5.36) and (5.37), the channel output becomes 

h(t)   * .    • °P B 
4 c   a 

e a(t) 

Thus, the transmitted pulse is widened atd distorted as a result of 

the electron density fluctuations in the plasma column. 

A special form of a(t) may be represented by 

o(t) * a^a^ft) 

where  |b(t) j   <   1 and a b(t) fluctuates about the value ft . 'if 0M 

time variation is small, (a /a.) << l, the channel output is appread- 
o    1 

mately given by 

3       * 
h{"~" TS^'V 'V I> • <^X' ♦£>»] 

V 0 Y 
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2a the stationary case. h(t) = 0. (5.38) reduces 5s 
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h(t) 
A /HVB»2 

o 

5.4  SUtistical Properties 

Some of the statistical properties of the scatter channel are 

examined in this section.   Again, we will restrict our analysis to 

that of a single constituent, described by a number density n(r, t|. 

We assume that the medium is randomly varying so that n|r, t| 

becomes a random process in space and time« 

From Chapter 4, we recall that the input-output relation for 
A 

the channel can be written as 

.  i   r i«* 

where 

M»)   * jz j K(t,«)F(«)e""ds> 

K(t,»)  =   f kft.s)«"1""** 

(5.41) 

and 

*    & 
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We aiiume that f(t) is non-random at d k(t(s) is real so that K(t,a) * 

K*(t, -a»).   The mean of the channel output is fires by 

Eh(t)   =  ^j   f   EKIt^JFIsJ.^de (5.42) 

From (5.26), we have immediately 

E K{t,«i) = AoQ{«) e-
loto [ G(7')e C    T     R      < «Cr'.Kl > «*• 

• V 
(5.4JI 

where < n(r,t) > s   E n(r,t) is the mean number density» 

The covariance of the channel output is given by 

+•♦• 
CovCh(t).Mf)] *   -4 J j   CovU<t..).K*(t\«'n 

(?n)  ..-• 

exp [i(«»t-«»,fnF(»)F{»,y d«d»' (5.44) 

Using (5.26), we obtain 

Cov [K(t.»).KV.«»')] = A0Q«dV) exp [-l(«-«')t0] 

f    ;  G(7)G(7') exp [ lz (*   ♦ £R). C?-.Vi] 
V"V 

Cov U(7,t). n(7',f)] dVdV« (5.45) 
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Thus, to compute the covariance of hit), *e need A« covariance of 

n(r,t).   We suppose that the scattering is caused by inborn ogcnel ties 

in die density of the medium in random flow.   In order to facilitate 

the computations, we shall make certain simplifying assumptions 

regarding th« i«-s.    Let 7 * (t+t')/2.   We like to relate n(r,t) to 

n(r.,t) and n(r',t') tonfr,.!), where r   Is the point to wbieh? 

flows as time goes from t to t, and r, flows Into 7* as time goes 

from t to t*.   We assume that t-t' is small and ignore effects, other 

than the flow, which can change the density of the constituent being 

considered.   Then, by means of an equation of continuity, we have 

n(r ,t)dV,   »  n(r,t)dV 
1 * (5.46) 

n{72.7)dV2   *  n(7',f)dV 

where dV. and dV_ ?.re two elementary volumes at r   and r_, respec- 

tively«,   We also assume that the velocity of the random flow Is 

Independent of the density n( r, t).   Then, for small values of t-t'e 

we may write 

where v(r, t) is the velocity of the flow at (r, t).   Thus, U ${T) is 

some function of position and- if 

■ ?« 
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9   »   f  #(7)n(7,t)dV 
"V 

v 

the», from (5.46) and (5.47). <p and <p' can also be expressed as 

*' L »[v;ivriCT>vT'w. 

It follows that 

Cov [».V'3S j  j    • (7)0,(7,)C©v[n(7,t).n{7,.t'))dVdV» 
TV 

-v.v, 

Coy tB^.Ö.nJPj.rndVjdVj («.*•! 

In this manner, we may put 

Cov [n(riat),a(r2.t)] = A(^   \      . VV*") «5.49» 

Applying (5.48) to (5.45), we obtain 
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Cov CK{t.«),K*(t;»')] = A   Q(«)Q%') exp [-i(a-«')t ) 

lI»"p["c"VV-|',V-i'] 

A ( -V1 • V VO «V, <^2 

M we delta« 

r   * V* 
and P • V rt 

Equation (5. 50) may be written at 

104 

(5.50) 

Cov[K(t,.).K*(f.»')? s  A.*Q(U))QV) exp C-i(n-.(»t03 

Jj exp { ^ <W [«•-•■>* -(•♦•'I |] 

(5. 51) A(7,p#r)ds7ds? 

.    ! 
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We assume that A (r, p, t) varies slowly with r and vanishes relatively, 

rapidly as j p j increases.   Specifically, we assume that A(7,7»7) 

becomes negligibly small when J p j exceeds some correlation length 

p   which is small compared to the modulation wavelength X   » 2nc/B, c m 

where B is the signal bandwidth.   This implies that the signal illum- 

inate« many uncorrelated scattering volumes with nearly uniform 

modulation.   Thus, by keeping p sufficiently small, we may assume 

thai 

v<7± | ,7)   * 7(7,7) 

Equa^n (5. 51) becomes 

Cov [K<t,o)),K*(f,»')T = A'QMQV J exp [-l(»-»?)t ] 
o © 

JJJexp {+L (a-T+£R) • [(...')7- (.♦••> £]} 

exp [ - j- (• + »'I Q^~^(£T+ *R) . 7<7,F) ] 

F{7; 7,7) A (7,7,7) d3 7 ds 7 dJ 7 C*. »I 

where F(v; r, t\ is the probability density for the velocity of (fee flew 

•*(7,i). 

Now we assume that Q(u>) is wideband, i. e., Q(w) m Q(* )t s> 
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y 
that — (t'-t)B << 1« where a   is the angular carrier frequency and B 

c o 

is the signal bandwidth.   Substitute (5. 52) into (5.44), we obtain 

Cov Ch(t).h(t*n * ^j  | QC«0> i * 
A 
 ; 

(2«r 

FC v;7.7) A(7. p97) d3 7 d3 7 d3 ? (5. 53) 

where 

mi • i Jrw.-d. 

As in the discrete scatterer case, we assume that f (t) is of 

the form, 

?(t)   =   m(t) cos £ u» t ♦ <p (t)3 (5. 54) 
o        • 

where m(t) and <? (t) are slowly varying functions tf time. Substitute 

(5. 54) in (5. 53) sad assume that P and t'-t are sufficiently small, so 

that we may drop the quantities 

;  ! 
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from the arguments of m(t) and 9 (t).   We then use the i«m and o 

difference identity on the product of cosines and drop the sum term 

because of it« rapid variations with r.   Equation (5. 53) becomes 

Cov [ h{t),h(f)] «   -g-  |<J(.o>r JJjF{v;7.T)A{7.».r» 

cos{-^<aT+£R). [7 + v(7.7)(f.t)3]dJvd57dJp       (5.55) 

The antenna gain patterns can influence the covariance function, 

greatly when the value of v(r,t)(t'-t)-exceeds the correlation length 
«•     «■■»     '■■» 

a .   A» v(r,t)(t'-t) increases to a large enough value« the Integra- 

tion will be carried over disjoint volumes of the scattering material«, 

and the covariance function will drop rapidly to zero. 

The variance of the channel output can be obtained directly 

frort (5. 55).   Thus 



-f. 
i 
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Varh(t)   *  Cov Ib»J,tW] 

-f !Q««0irjjrA«7.7tt)c(7.|)GV*|i 

m*t tV [fay iRJ.7lcc [ itf^ *B)-P]d574S t 

C5.56) 

1    I, 
Since r-m (t) is proportional to the average power being trans« 

mined at t, hence Var h(t) is proportional to the average power in 

the fluctuating component of h(t), received at t.   Substitute the vain« 

of A^ from (5.22) in (5. 56) and compare with the bistatic radar 

equation, we see that the channel cross section is given by 

0(t)   *    |Q(»O)|2   JJ AC7,?.t)G(7-|)G*(7+£) 

cos [ ^ (£T+ aR). p] d57d5T (5.5f) 

In many practical situations, it is possible to put 

A(7,p,t)   =   C(p) Varn(7,t) 

where C(0) = 1.   Then (5„ 57) may be written as 

o(t)   =   |Q(«e)l* JjrC(7-|)G*(7 + |)Varn«7.t) 

C|p~) cos [^2 {aT+ 5R). p]d37d3 p |5. 58} 

f> 



If the antenna gain« are nearly uniform» (5. 58) reduces to 

ao9 

o(t)   =    |Q{«o)j     Vc(«p)J  V«rn(7,t)d   r «5.5f| 

where V {») is the correlation volume, 

Vc(»)   *  J C(p) cos [ | <aT* «R). p] dS? (S. 60) 

For the plasma scattering example of the last section, the 

quantity   | Q(» ) |    Is given by 

2     2 

i°M * -4C 5TT ) C -17-r) !<v VI.   ««•"• • 4«e o 6»    +v 

The evaluation of V (tit) depends upon the particular model 

used for the correlation function C{p).   A possible form of C(p) 

frequently assumed Is 

C(9)  »  a {5.62) 

Substitute (5.62) in (5.60) ?nd carry out the integration using the 

kj   same method as that: for evaluating (5.32^ «** obtain 

•*     2        2 0 
1/2    3      If *«   CO*    2 V f#)   «   n       8    e   « c c (5.6S) 

where 0 is the bistatic angle. 

.      ■-,...■   >■_-*■ -,-., 
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Appendix 1 

APPLICATION OF THE LORENTZ RECIPROCITY 
THEOREM TO SCATTERING PROBLEMS 

U 

Let (E.tH.) and (E,,H_) be two different distribution« of I 112« 

electromagnetic fields of the same frequency» which can be esteb- 
j 

lished in a region of space containing no sources.   Each set of field 

vectors satisfies the Maxwell's equations.   1 orents reciprocity 

i 
theorem sU>^ 

i 
■ i 

[   n^EjXHjj-fjXHjJdS  »  0 (I. I) 

where n is the unit normal vector to the surface S enclosing 'he region 
i 

of interest.   Although there are many forms of the reciprocity 

theorem [32]- [55], the form we use here is that due to Lorentx 
i 

[13J.CJ63. 
i 

■ 

In general, the scattering geometry consists of a transmitter 

which illuminates the target and a receiver at which we observe the 
I 

scattered signal.   A schematic representation is shown in Fig. 3.   In 

particular, we seek an expression for the voltage induced at the 

receiver terminals by the field scattered by the target. »     1 

110 
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Figure 8.   Schematic Representation of Scattering 
Geometry 
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Let {E ,H,) be ike fields of the receiving antenna with driving 

current I» at its feed point with no other sources present; L e., both 

the transmitter source and target are removed.    Let (E ,H ) ha the 

total fields obtained with both the transmitter source and the target 

in place.   It is assumed that the same current I„ is delivered to the 
R 

feed point of the receiving antenna either with the transmitter source 

and the target removed or in place. Thus, E and H. represent the ' 

total fields which would be obtained in «pace if the receiving antenna 

were used as a transmitting antenna, while E   2nd H, represent the 
2 2 

sum of the transmitter, receiver, and scattered field*« 

The surface integral in (1.1) can be written a* 

I »•{E1xH,-EJxH|)dS  *   9 (I.*) 
S  +S_*S*S_ 1**1 
•     T     •     R 

The integration over the spherical surface S    vanishes on account of 

the radiation condition as the sphere recedes to infinity [3«].   For 

simplicity, we replace the transmitter by an equivalent source J_, 

which creates the incident field.   From the divergence theorem, we 

hav« 

J    n-CE^Hg- E^xHjJdS = -J    V • (EjX H^ E^x Hj)dV     (LI) 
ST VT 

j 
Within the volume V   , Maxwell's equations are 

T 

- ;' . 
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fxE    *   -i»M H, ?XE   «   -toy H, 

V x H   *   Hoc E. ▼ x H, »   +t»t £,♦ J_ 
1 o  1 2 o 2     T 

Eq.  0.3) becomes 

j    n^EjXH^E^Hj)*»  « J     E^ (L4| 
S? VT 

The integral over the surface of the scatterer can be evaluated 

in a similar fashion.   That is, we replace the scatterer by an equiva- 

lent distribution of current J , induced by the incident field.   Then, 

within the volume V , enclosed by the surface S c the fields satisfy 

Maxwell's equations 

VxE    *   -i»U rlj 7xEj«   -l«|i |L 

1 o  1 .2 o 2     a 

Again, applying the divergence theorem, we obtain 

j    n^EjXH^- EjXHjJdS * J    E^J^dV &§S 

The surface S    includes the exterior shielding su^Jtacee 

(assumed to be perfectly conducting) of ihe receiving syslem# &t& 

inner metal surfaces of the antenna and transmission line Imm «o Ä* 

. ,,:;v- IWMÜMHO »wiwawöjCT^^ 
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feed point (shown by Hike plane AA' in F.g. 8), and UM crof«- 

sectional plane AA1 inside the transmission line.   Since n*£. X H. a 

IS 
n X EieH2 * 0 end n «Ex H  = n x E*H    = 0 on the metal surfaces, ' 

the only non-vanishing contribution to the surface integral over S    is 
Wk 

that over the cross-sectional plane AA'«   Thus» 

J    n-lEjXi^-E^xHjJdS = J      n^ (EjX r^-F^XHjHlS       0.6) 

The evaluation of she surface integral over AA* requires some const- 

deration of the field distribution inside the transmission line.   For 

the present purpose we consider a coaxial line [ 133» although such a 

choice is arbitrary [36].   For a coaxial 1'nc, the fields in cylindrical 

coordinates are given by 

E   *       , I   ivT  »      H. * -~r 0. ?) r      r in(b /b.)   " p      2n* 
o   & 

where h and b   are the inner and outer radii of the line, and V and I 

are the line voltage and current.   Substitution of 0. ?) into 0.6) give« 

f      «•(S.xiL.f,sHjdS ■   V.JL-V,!, 0*«) 

Lei- V be the total voltage induced at the terminals of the receiver by 

the transmitter field and the scattered field, then V * V.+ ¥', 



US 

V (Vt-V)/Z . and V.l.- VJL-" 21. V» where Z   is the characteristic 
* 1 O 3 2 2 11 © 

Impedance of Ute transmission liae.   Thus« we obtain 

J    & * (E%X H2- EJX Ht)dS » -II V a.*> 

Finally, from Equations (1.2),(1.4), 0.5), and (E. 9), we have 

•£;[JV vVvtJvvvv]    *■»» 

The first term is due to transmitter-receiver coupling«   Hence, fi&e 

scattered voltage is given by 

* arLfr*. dV a. t»i 

i 

mmwmsmimmm 
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Appendix U 

PROBABILITY DENSITY FUNCTION FOR THE RETURNED 
WAVEFORM FROM A RANDOM COLLECTION OF 

ROTATING DIPOLE MATTERER» 

The probability density function for the echo waveform can be 

evaluated by first finding the characteristic function of the distribu- 

tion [ 241, [ 251.   For simplicity we let 

ft ft a* •••*••    d* ■•■•«#«* -« ~* w0 

...|    pCart.Ö,#, 5Jl.«.ß,»d*»r)«i»od0 ...,d» J.-.J     P1*a. 

I 

- J.---JP^O^OI*• jp<^• • • • J-• • Id%M% 

»dw *    "ft   p(w&)dw 
1*1 

"•   ~* «• 
ere w represent« a ,6,$,.,, etc.   Hence, we can «rite» 

p(x| «   £     f...j p(a ä...(,® ^^...dw^ f.*. f p(7)dt6(x-x )     (II. 1) 

From E^s. (3.2) and (3,4), the echo signal can be wr&tttm in the 

Ions»,» 
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»her. 

0 

The characteristic function of the distribution beeomu 

4« 

ft 
» E r r »ir     - w-    - r+T r A *v V*1*1 

ifi"V • W-*», H TT -T-« *T     at 
a 

' expiukn#k(t,tk>tccos VÜC"«VV*Le-«VVl 

*-T 

a*ö IT J     #        W        r.   0 r 
I 

' exp [iu #k(t,f)(C cos y 0 co, <yy * L co. fiftji]? 

• exp{-j^i + ;^(tWj...j P(ro s^...* 
wi 

•   exp [iu tk<t.t'MC co. 0l+ ü co. ffl+ 0s) * L cos (#r#§W]} 



. .-     ^-.M-^-^f^"»-*.---  ■*^-TV^i_--.:;-.^-r^ftfc.~i!--.^   • 

11» 

Expanding lb« exponential ioaidi the integral in a power series, we 

•Mate 

• -    •    iT 
t(u)   «exp{-f   v(t)dt+E   E     E     f   vtt'ydt'f.• .f   p(a-...o,»J 

-T I*Om*0»»0 -T *'   V     9 * 

•• «• r _**m*n <-*,/**, »        « 
*.0...d.r[i»»k».i-j1 TCSf ««•'•, ««"»,♦ V 

2    _        *T a    _2 coi9^-^)  »  exp|.!L-0
2
+ J   vU'Mt1  SEE 

-T 1*1 m«l n«l 

(itt> 
#*!»♦• 

Jtimtni W(*,m,n;ttfj] 

1        2 where, for simplicity, we have set <x> s 0, < x > * o , and 

W(lem.n;t9f) ■   J««-f   p(ä*0.... .«r)da0. ,.d£ [#k(t,t')l 

• ClUmLncosieico8nr,(#l+ # Icot.^- $J 

More conveniently, we can write the triple summation as 

E     ^T  W (tr»'J whereo * 1+m+tt ql       q ' q*e   ^        H 

I*m*n 

Thus, 

2   *     +T 

tiu) =   exp i - -- 
•   «..%« 

;.!L.0
2

+ [ v{t')dV  E   &£- W <t.f>) 
* J-T q«S * q 

1.31 
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By taking the inverse transform of the characterise function, 

obtain 

♦• 

w« 

r 

if «,[-*,.£.«]. ..p[^v,]dll    w.4, 

where 

♦T 
oqW  =  J   v(f)W (t.f)dt' 

-T 
(U.5) 

If *e expand the second exponential of (n. 4) in a power aeries, w* 

have 

I     ♦*    , u!    I t ^ 

Equation 01.6) gives the time-varying probability distribute 

of the echo waveform.    We will show that the probability density at 

a particular instant of time tends to become a Gaussian probability* 

density a«* the echo rate becomes large.' If we let 

x 
0 ft *    *-    and    y «   ©w 

Equation (II. 6) can be written as 

JMHW4W 
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W* not« thaS 

f(lY)Be"iYa-^dY 
- Jn     ♦• v 

Thus. ev.Ju.ting the integral. awl putHng p(x) . ^^ ^ 

2 

PW 

obtain 

V2n"o [i#i*^ci)J 0L»| 

where Hkare Hemiite polynomials defined as [l«), 

•    Hk«  *   <-l)k e *±r ."  * 
k *T 

We assume here that all moments of the distribution exist and note 

that o   can be «ritten as 

k 
o    * 

k 

J _ v(t')W2(t,f)dte 

'-T CO, 3) 

From Eqs. 01-5) and 01.8), we have 



■w5^«ü=?r"Ti.-,wn iwi.i J.«J^ 

Ul 

o I vc»,)wkei.t,)di» 

k +T k    * 
[ J     v(f)W2(t,*«)df]] 

K = ctmstaaft 

Now if «« let va be the upper limit of the echo /'ate such that; v§t> < V_e 

ß»e» 

J   vSt'Jw^t.t'Ht' 
JT 

-T 0        -T 

0      [I   *P *,*.*!**]* .ut«r W© J [J vfr«)w2tt.i'*U'1I v-      r f   v(t' 

1 J-T 
-       k/2-l        4T ,k 

V° I J    wjU»|,)d*,J* 
•T 

*•    9   as    v '*• • 
9 

Thus, as vQ become« large, Eq, 01. 7) reduces to 

pW   * VlWo 
ps.fl 

The error is of order 
I 

k/2-l where k > S* 

In a similar mannet, it can fee shown 'hat all joist distribu- 

tions of the i-cho waveform approach Gaussian in the limit. 



Appendix in 

DYADIC GREEN'S FUNCTION FO» 
THE VECTOR HELMHOLTZ EQUATION 

The vector Helmholtz equation for the electric field with 

viwt 
o time dependence is 

v x v x E(7) - k2E(7) « -i«p 7(7) cm. 15 

where k = a» |ie -   A solution for the inhomogeneous vector wavt 

equation can be written a« [283« 

E(7) = -i«Bu f   r(7,7'). Jt^jdv« on.2» 
Jv 

where the double bar indicates a dyadic quantity.   Substitution of 

Oil.2) into (ULI} gives 

f Cvxvx r(7,7,)-k2r(7s7«)] • j(7w =7(7)      TU,3) 

Sine« 

7(7)   =   [   !• 7j7,)5(r-7')dV» 

where I is the identity dyadic.    Equation (III. 3) becomes 

122 
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2«- f  [ VxVx nV.r'J- k 7(7,7')-F«(r-7')]- J*7'WV' ■ 0 
4Y 

Since this relation hold* for any arbitrary Tfr')e  f(r, r') must .satisfy 

the differential equation, 

vxvx7(7,7) - k27(7,7') * "6(7-7') (ui.4) 

We require that the solution satisfies the radiation condition for r*<». 

The r-dependence must be in the form of an outgoing spherical wave. 

• — - 2- Using the vector idcniity VxVxA = V(V«A) - V A,  011.4) may 

be written as 

(V2+k2)r(r,r') = V[V.nr.r')]-U«7-7,y (UI. 5) 

Taking.the divergence of 011.4), «e find 

V. r(r,7')   =   -   -^V6(r-7) 
k 

Equation 011. 5) becomes 

(¥2+k<2)T(r,r')   =  -fF+ -jVVj   6f7-7«) 0H.fc) 

Let 

r(r,r')   =   ( I* ~ ?7j C|r,r') 011. 7) 
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2     2 
and note that the scalar operator (7 <• k ) on the left side of (III. 6) 

may be transposed with the dyadic (I + --y 7 7).   We obtain 
k2 

(f+  ~ 7 V)[{V2+ k2)G(r.7') + 6(r-7')3 * 0 (III. 8) 

Equation (III. 8) is satisfied by 

(V2+k2)G(r,7»)   *   -6(7-7«) (OI.9) 

which is the differential equation tor the scalar Green's function.   The 

solution in free space [30] is 

G(r.r')   = 
e-ik|7-7,j 

4TT {7-7'j 
an. io) 

Equations 011. 7) and (III. 10) yield the desired dyadic Green's function 

ir. free space 

. -      1 -iklr-r'l 
r(r.r')   =   (F +  727V)  — 

4n |7-7« j 
(in. II) 

To find a complete solution to th« inhomogeneous vector wave 

equation, consider the vector form of the Green's theorem [37}» 

f   (Q-7x7 xP - P. 7X 7xQ)dV 

j (P x7xQ - Q XV xP) • ndS (m. 12) 
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where P and Q are two vector functions of position and n is the 

outward unit normal vector.   In order to apply the vector G?e«a*s 

theorem, we scalarly multiply the dyadic equation (III. 4) on the right 

by an arbitrary constant vector a and obtain a vector relation t&s 

7(7,7'). », 

vxvx"(7,7').I- k2r(7.7e).ä= 16(7-?) (m.U) 

Let P = r(r,r').a and Q = E(r'), Equation (III. 12) together with Eqs. 

(III. 1) and (III. 13) give 

E(7)-a = -im I [ r(7,7').aV j(7')dv» 

- f n'. /[r^.^j.IixV'xEÜT-ECr'jxv'x ["{7,7') •*]}*$• 
s 

(in. u) 

From the Maxwell's equation V xE(r') =   iiflnH(r') and the vector 

identities 

n'•[ rjr.r'J-IlxCV'xEir')] = -n' x [ 7' xE(7')]. [ r(r,7')»a) 

Ä'. E(7')xVx[T(7,r!)«a] = n* xE(7')-7' X C r(7,7lW] 

Equation (III. 14) may be written a« 
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E(7)-a   ■ -i»u  T   C r(7,r').»]- JCr'JdV* 
Jv 

-J   {ittJuCÄ'xKtT'Il^nT.T^-al-CÄ'xECPjl.VxCn^J'J^lJdS« 
5 

CDLIS) 

Since the constant vector a may be chosen arbitrarily, Eq*  (IK. 15$ 

fives 

E(7) = -i«p f r<7,7i) .j(7')dv 
v 

- J |iu)u[Ä' XH(7«):|. 7(7,7')-[fi'xEir')]. vx 7(7,7") j «is» 
8 (III. 1») 

The volume integral is a solution to the inhomogeneous vector 

Kclmholtz equation with a spatially distributed source J(r').   The 

surface integrals are solutions to the homogeneous Heimholte equation 

-      2- 
VxVxE-k E  =0in terms of the boundary values on S.   The first 

term in the surface integral may be interpreted as a contribution 

from a surface current of density n x H on S, and the Second tern» 

may be considered as a contribution from a magnetic current sheet 

of density E xn.    For a perfect conduct r the tangential component 

of E vanishes on S, then nxE = 0. 



Appendix IV 

GREEN'S FUNCTION FOR THE TIME-DEPENDENT 
WAVE EQUATION 

Consider the inhomogeneous scalar wave equation» 

c      dt 
(IV. I) 

where i{r. t) describes the distrioution of sources which are func- 

tions of both position and time.    The solution [39] - [40] may b* 

written as 

t(7.t) .   f J  G(7.t;9rl.t*)f|r',tf)4Sr'dtl (IV.2) 

I 

where the Green's function G(r, t; r',t') satisfies the differential 

■*•) 6(t-t«) «IV. 3) 

5 

To find G, we consider the Fourier representations. 

G(7.t;7'.t') =  jVkJdxg(k.«i)e •ik.(r-r')   «u»(t-t«) (IV. 4) 

6(r-r') 6(t-t'J =   —~rfd>f 1     fArj     -k-(r-r')   *i«iKt-t*>    „__ _. "   ä     ' dioe       * e (IV. 5) 
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.-r. ■   fa.** ..;-■.'■ :***£'»r*.»*JBW»«f! 



Substituting {IV, 4) and (IV. S) into (IV. 3), we find 
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g(k,a>) 
<3"> rk

2 -«S 

Hence 

(IV. 6) 

G(7,t;7'.«'M -^ fd3kf        d*        .-»-Cr-'^mt-tf» 

(IV. 7» 

The Green*a function satisfying (IV. 3) represents the wave 

disturbance caused by an impulse source at t=t', located at r*r'. 

Thus, G gives the description of the effect of this impulse as it 

propagates away from r= r' in the course of time.   It ca t then be 

assumed that G and dG/dt should be zero for t < t'; i, e.. no effect 

should precede the eaase in time.    Furthermore, for t> t', the 

wave disturbance propagates outwards as a spherically diverging 

wave with a velocity c. 

Equation (IV. 7) can be evaluated by application of the Caucn> 

residue theorem.   However, in order to make G vanish for 4 < Is, 

we imagine that the poles at uu = _+_ck are displaced above the real 

axis by an arbitrarily small amount C in the complex 4)-plane.    The 

integral over the lower half plane (t < V) will then vanish, while 

the integral over the upper half plane will give a non-vanishing 



contribution.    Equation (IV. 7) may be written as 
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G(r,t; r',t') =   Urn 1      f.Vr,   c 

e-»0 (2n) * l
rth 

ik*R*i»T 

k2- ~(«n-i«|2 

c 

where R = r-r' and T - t-t'.    Then, by Cauchy's theorem, w« fin4 

_ e      f .3r   ~»k*R   «in ckf (IV. 8) 

The integration over the three dimensional k-space can now be per» 

formed.   We choose a coordinate system such that 

k'R = kRcoift 

d*k   = k2 sin a da dp dk 

Equation (IV. Sj becomes „ 

Zn 
r c 

(Zn\~ 49      "o 

c     f "     r   ., ,    .     ,    r     -ikR cos a .   _, j_ G=    rj    dßj    dkksinckTJ    e sin ft dft 

2n Rwo 

• 

I dk sin kR sin ckf 

—r- j   sin — Y sin T Y dY 
4n R4o 

J^T. &).«(,♦&>] JIV-VS 
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where R =  |r-r'{ and T £ t-t'.   The second term in (IV. 9) does not 

contribute because of the conditions of realistability mentioned 

earlier.   Therefore» 

G(7. t; 7'. f) =  ——  b (t-V - '        ' Y t-t' > 0        (IV. 10) 
.      4n|7«?|     ^ C      J 
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CONTINUATION SHEET 

The bistatic radar reflecting characteristics of a randomly tumbling dipole 
are investigated.    An expression for the scattered voltage is derived by application 
of the Lorentz reciprocity theorem.    The correlation properties of the received 
signal are examined.    Some statistical assumptions are made in order to obtain 
readily usable results. 

A theoretical model is developed for the radar echo from a random collection 
of moving dipole scatterers.    The analysis of the model takes into account some 
effects of scatterer rotation which have been neglected in previous work.    The 
fluctuating characteristics of clutter echoes are also determined.    The theory and 
some experimental results in the literature are shown to be in relatively good 
agreement. 

The properties of random scatter communication channels are also investigated. 
The constitutive parameters of the scattering medium.are assumed to be varying 
randomly with space and time.    The effects of antenna gain are included in the 
derivation of the channel function in order to take explicit account of the fact that 
scatterers may flow in and out of the volume illuminated by the two antenna beams. 
Arbitrary polarization is assumed for both the transmitting and receiving antennas. 
Specific results are obtained for dipole and plasma scattering. 
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